The standard models for statistical signal extraction assume that the signal and noise are generated by linear Gaussian processes. The Optimum filter weights for those models are derived using the method of minimum mean square error. In the present work we Study the properties of signal extraction models under the assumption that signal/noise are generated by symmetric stable processes. The optimum filter is obtained by the method of minimum dispersion. The performance of the new filter is compared with their Gaussian counterparts by simulation. (c) 2008 Elsevier B.V. All rights reserved.
机构:
Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
Sornette, D
Ide, K
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
机构:
Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
Sornette, D
Ide, K
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USA