Existence of weak solutions for a class of fractional Schrodinger equations with periodic potential

被引:8
作者
Pu, Yang [1 ,2 ]
Liu, Jiu [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] China West Normal Univ, Coll Math & Informat, Nanchong 637002, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Fractional Laplacian; Strongly indefinite functional;
D O I
10.1016/j.camwa.2016.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a time-independent fractional Schrodinger equation -(Delta)(alpha)u + V(x)u = f (x, u) in R-N, u is an element of H-alpha (R-N), where alpha is an element of (0, 1), N > 2 alpha, V (x) is a periodic potential, f is superlinear and has a general subcritical growth. Based on a generalized linking theorem and a variant fountain theorem for strongly indefinite functional, we obtain a ground state solution and infinitely many solutions. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:465 / 482
页数:18
相关论文
共 22 条