Supersymmetry and localization in the quantum Hall effect

被引:40
作者
Kondev, J
Marston, JB
机构
[1] Department of Physics, Brown University, Providence
基金
美国国家科学基金会;
关键词
quantum Hall effect; localization; disordered systems; supersymmetry;
D O I
10.1016/S0550-3213(97)00300-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the localization transition in the integer quantum Hall effect as described by the network model of quantum percolation. Starting from a path integral representation of transport Green functions for the network model, which employs both complex (bosonic) and Grassmann (fermionic) fields, we map the problem of localization to the problem of diagonalizing a one-dimensional non-hermitian Hamiltonian of interacting bosons and fermions. An exact solution is obtained in a restricted subspace of the Hilbert space which preserves boson-fermion supersymmetry. The physically relevant regime is investigated using the density matrix renormalization group (DMRG) method, and critical behavior is found at the plateau transition. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:639 / 657
页数:19
相关论文
共 50 条
[21]   Developments in the quantum Hall effect [J].
von Klitzing, K .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 363 (1834) :2203-2219
[22]   The theory of the quantum Hall effect [J].
Shrivastava, Keshav N. .
CURRENT ISSUES OF PHYSICS IN MALAYSIA, 2008, 1017 :422-428
[23]   2D-localization and delocalization effects in quantum Hall regime in HgTe wide quantum wells [J].
Gudina, Svetlana V. ;
Arapov, Yurii G. ;
Neverov, Vladimir N. ;
Podgornykh, Sergey M. ;
Popov, Mikhail R. ;
Shelushinina, Nina G. ;
Yakunin, Mikhail V. ;
Dvoretsky, Sergey A. ;
Mikhailov, Nikolay N. .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 13 NO 7-9, 2016, 13 (7-9) :473-476
[24]   Duality in supersymmetric Yang Mills and the quantum Hall effect [J].
Dolan, Brian P. .
MODERN PHYSICS LETTERS A, 2006, 21 (20) :1567-1585
[25]   Single-electron states in the quantum Hall effect [J].
Zhitenev, NB ;
Fulton, TA ;
Yacoby, A ;
Hess, H ;
Pfeiffer, LN ;
West, KW .
PHYSICA E, 2000, 6 (1-4) :242-246
[26]   Optical Hall Effect in the Integer Quantum Hall Regime [J].
Ikebe, Y. ;
Morimoto, T. ;
Masutomi, R. ;
Okamoto, T. ;
Aoki, H. ;
Shimano, R. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[27]   Local breakdown of the quantum Hall effect in narrow single layer graphene Hall devices [J].
Yanik, C. ;
Kaya, I. I. .
SOLID STATE COMMUNICATIONS, 2013, 160 :47-51
[28]   ANDERSON LOCALIZATION AND SUPERSYMMETRY [J].
Efetov, K. B. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (12-13) :1756-1788
[29]   Quantum computation with quasiparticles of the fractional quantum Hall effect [J].
Averin, DV ;
Goldman, VJ .
SOLID STATE COMMUNICATIONS, 2002, 121 (01) :25-28
[30]   Integer quantum Hall effect in a PbTe quantum well [J].
Chitta, V. A. ;
Desrat, W. ;
Maude, D. K. ;
Piot, B. A. ;
Oliveira, N. F., Jr. ;
Rappl, P. H. O. ;
Ueta, A. Y. ;
Abramof, E. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2) :124-127