共 53 条
Parthenolide regulates oxidative stress-induced mitophagy and suppresses apoptosis through p53 signaling pathway in C2C12 myoblasts
被引:34
作者:
Ren, Yinghui
[1
,2
]
Li, Yan
[1
]
Lv, Jienv
[1
,3
]
Guo, Xiangdong
[1
]
Zhang, Jieyou
[1
]
Zhou, Dongmei
[1
]
Zhang, Zimu
[1
]
Xue, Zhenyi
[1
]
Yang, Guangze
[1
]
Xi, Qing
[1
]
Liu, Hongkun
[1
]
Liu, Zehan
[4
]
Zhang, Lijuan
[1
]
Zhang, Qi
[5
]
Yao, Zhi
[1
]
Zhang, Rongxin
[1
,6
]
Da, Yurong
[1
]
机构:
[1] Tianjin Med Univ, Dept Immunol, Key Lab Immune Microenvironm & Dis, Educ Minist China, Tianjin 300070, Peoples R China
[2] Tianjin Med Univ Gen Hosp, Tianjin Key Lab Lung Canc Metastasis & Tumor Micr, Tianjin, Peoples R China
[3] Hexi Women & Children Healthcare & Family Plannin, Clin Lab, Tianjin, Peoples R China
[4] Third Peoples Hosp Chengdu, Surg Intens Care Unit, Chengdu, Sichuan, Peoples R China
[5] Tianjin Univ, Tianjin Nankai Hosp, ITCWM Hosp, Tianjin Key Lab Acute Abdomen Dis Associated Orga, Tianjin, Peoples R China
[6] Guangdong Pharmaceut Univ, Sch Life Sci & Biopharmaceut, Guangdong Prov Key Lab Biotechnol Drug Candidates, Guangzhou, Guangdong, Peoples R China
基金:
中国国家自然科学基金;
关键词:
mitophagy;
myoblasts damage;
oxidative stress;
p53;
parthenolide;
ANTIINFLAMMATORY SESQUITERPENE LACTONE;
LYSOSOMAL MEMBRANE PERMEABILIZATION;
SKELETAL-MUSCLE CELLS;
REACTIVE OXYGEN;
DEATH;
MITOCHONDRIA;
ACTIVATION;
ROS;
TESTOSTERONE;
INJURY;
D O I:
10.1002/jcb.28839
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Muscle redox disturbances and oxidative stress have emerged as a common pathogenetic mechanism and potential therapeutic intervention in some muscle diseases. Parthenolide (PTL), a sesquiterpene lactone found in large amounts in the leaves of feverfew, possesses anti-inflammatory, anti-migraine, and anticancer properties. Although PTL was reported to alleviate cancer cachexia and improve skeletal muscle characteristics in a cancer cachexia model, its actions on oxidative stress-induced damage in C2C12 myoblasts have not been reported and the regulatory mechanisms have not yet been defined. In our study, PTL attenuated H2O2-induced growth inhibition and morphological changes. Furthermore, PTL exhibited scavenging activity against reactive oxygen species and protected C2C12 cells from apoptosis in response to H2O2. Meanwhile, PTL suppressed collapse of the mitochondrial membrane potential, thereby contributing to normalizing H2O2-induced autophagy flux and mitophagy, correlating with inhibiting degradation of mitochondrial marker protein TIM23, the increase in LC3-II expression and the reduction of mitochondria DNA. Besides its protective effect on mitochondria, PTL also prevented H2O2-induced lysosomes damage in C2C12 cells. In addition, the phosphorylation of p53, cathepsin B, and Bax/Bcl-2 protein levels, and the translocation of Bax from the cytosol to mitochondria induced by H2O2 in C2C12 cells was significantly reduced by PTL. In conclusion, PTL modulates oxidative stress-induced mitophagy and protects C2C12 myoblasts against apoptosis, suggesting a potential protective effect against oxidative stress-associated skeletal muscle diseases.
引用
收藏
页码:15695 / 15708
页数:14
相关论文