Kinetic condition and the Gibbs function

被引:4
作者
Asakura, F [1 ]
机构
[1] Osaka Electrocommun Univ, Fac Engn, Neyagawa, Osaka 5728530, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2000年 / 4卷 / 01期
关键词
hyperbolic system; conservation law; phase boundary; entropy;
D O I
10.11650/twjm/1500407200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for a 3 x 3-system of conservation laws describing the phase transition: u(t) - v(x) = 0, v(t) - sigma(u)(x) = 0, (e + 1/2v(2))t - (sigma v)(x) = 0. A phase boundary is said to be admissible if it satisfies the Abeyaratne-Knowles kinetic condition. We give a physical account of the kinetic condition by means of the Gibbs function. We also obtain a useful description of the entropy function using the Gibbs function.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 19 条
[1]   KINETIC RELATIONS AND THE PROPAGATION OF PHASE BOUNDARIES IN SOLIDS [J].
ABEYARATNE, R ;
KNOWLES, JK .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (02) :119-154
[2]   DYNAMICS OF PROPAGATING PHASE BOUNDARIES - ADIABATIC THEORY FOR THERMOELASTIC SOLIDS [J].
ABEYARATNE, R ;
KNOWLES, JK .
PHYSICA D, 1994, 79 (2-4) :269-288
[3]   ON THE DISSIPATIVE RESPONSE DUE TO DISCONTINUOUS STRAINS IN BARS OF UNSTABLE ELASTIC-MATERIAL [J].
ABEYARATNE, R ;
KNOWLES, JK .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1988, 24 (10) :1021-1044
[4]  
Asakura F, 1999, INT S NUM M, V129, P21
[5]  
ASAKURA F, 1999, METHODS APPL ANAL, V6
[6]   Gas dynamics system: Two special cases [J].
Bereux, F ;
Bonnetier, E ;
LeFloch, PG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (03) :499-515
[7]   THE VANISHING VISCOSITY METHOD IN ONE-DIMENSIONAL THERMOELASTICITY [J].
CHEN, GQ ;
DAFERMOS, CM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (02) :531-541
[8]   STABILITY THEOREM AND TRUNCATION ERROR ANALYSIS FOR THE GLIMM SCHEME AND FOR A FRONT TRACKING METHOD FOR FLOWS WITH STRONG DISCONTINUITIES [J].
CHERN, IL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :815-844
[9]   ENTROPY RATE ADMISSIBILITY CRITERION FOR SOLUTIONS OF HYPERBOLIC CONSERVATION LAWS [J].
DAFERMOS, CM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (02) :202-212
[10]  
Fermi E., 1956, THERMODYNAMICS