A probabilistic micromechanical code for predicting fatigue life variability: Model development and application

被引:22
作者
Chan, K. S. [1 ]
Enright, M. P. [1 ]
机构
[1] SW Res Inst, San Antonio, TX 78238 USA
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2006年 / 128卷 / 04期
关键词
CRACK-GROWTH; STRESS INTENSITY; THRESHOLDS;
D O I
10.1115/1.2180811
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper summarizes the development of a probabilistic micromechanical code for treating fatigue life variability resulting from material variations. Dubbed MICROFAVA (micromechanical fatigue variability), the code is based on a set of physics-based fatigue models that predict fatigue crack initiation life, fatigue crack growth life, fatigue limit, fatigue crack growth threshold, crack size at initiation, and fracture toughness. Using microstructure information as material input, the code is capable of predicting the average behavior and the confidence limits of the crack initiation and crack growth lives of structural alloys under LCF or HCF loading. This paper presents a summary of the development of the code and highlights applications of the model to predicting the effects of microstructure on the fatigue crack growth response and life variability of the alpha+beta Ti-alloy Ti-Al-4V.
引用
收藏
页码:889 / 895
页数:7
相关论文
共 25 条
[1]   Validation of the step test method for generating Haigh diagrams for Ti-6Al-4V [J].
Bellows, RS ;
Muju, S ;
Nicholas, T .
INTERNATIONAL JOURNAL OF FATIGUE, 1999, 21 (07) :687-697
[2]   Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti-6Al-4V [J].
Boyce, BL ;
Ritchie, RO .
ENGINEERING FRACTURE MECHANICS, 2001, 68 (02) :129-147
[3]   SCALING LAWS FOR FATIGUE-CRACK GROWTH OF LARGE CRACKS IN STEELS [J].
CHAN, KS .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1993, 24 (11) :2473-2486
[4]   Variability of large-crack fatigue-crack-growth thresholds in structural alloys [J].
Chan, KS .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (12) :3721-3735
[5]   A microstructure-based fatigue-crack-initiation model [J].
Chan, KS .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2003, 34 (01) :43-58
[6]   Probabilistic treatment of microstructural effects on fatigue crack growth of large cracks [J].
Chan, KS ;
Torng, TY .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1996, 118 (03) :379-386
[7]  
Chan KS, 2002, MODELING THE PERFORMANCE OF ENGINEERING STRUCTURAL MATERIALS III, P135
[8]  
CHAN KS, 2003, FATIGUE 2003, P39
[9]   Eva Kallin's lemma on polynomial convexity [J].
De Paepe, PJ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :1-10
[10]   THRESHOLD RANGE AND OPENING STRESS INTENSITY FACTOR IN FATIGUE [J].
DOKER, H ;
MARCI, G .
INTERNATIONAL JOURNAL OF FATIGUE, 1983, 5 (04) :187-191