Prediction on critically ill patients: The role of "big data"

被引:10
|
作者
Bulgarelli, Lucas [1 ,2 ]
Deliberato, Rodrigo Octavio [1 ,3 ]
Johnson, Alistair E. W. [1 ]
机构
[1] MIT, MIT Crit Data, Lab Computat Physiol, Harvard MIT Hlth Sci & Technol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Hosp Israelita Albert Einstein, Big Data Analyt Dept, Sao Paulo, Brazil
[3] Endpoint Hlth Inc, Dept Clin Data Sci Res, Palo Alto, CA USA
基金
美国国家卫生研究院;
关键词
Critical Care; Outcome prediction; Machine learning; ARTIFICIAL NEURAL-NETWORKS; CHRONIC HEALTH EVALUATION; ACUTE PHYSIOLOGY SCORE; INTENSIVE-CARE-UNIT; HOSPITAL MORTALITY; ORGAN DYSFUNCTION; RISK PREDICTION; SEPSIS; APACHE; MODEL;
D O I
10.1016/j.jcrc.2020.07.017
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Accurate outcome prediction in Intensive Care Units (ICUs) would allow for better treatment planning, risk adjustment of study populations, and overall improvements in patient care. In the past, prognostic models have focused on mortality using simple ordinal severity of illness scores which could be tabulated manually by a human. With the improvements in computing power and proliferation of electronic medical records, entirely new approaches have become possible. Here we review the latest advances in outcome prediction, paying close attention to methods which are widely applicable and provide a high-level overview of the challenges the field currently faces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:64 / 68
页数:5
相关论文
共 50 条
  • [41] Nomogram Prediction Model of Hypernatremia on Mortality in Critically Ill Patients
    Qi, Zhili
    Lu, Jiaqi
    Liu, Pei
    Li, Tian
    Li, Ang
    Duan, Meili
    INFECTION AND DRUG RESISTANCE, 2023, 16 : 143 - 153
  • [42] Prediction of the haemodynamic effects of volume expansion in critically ill patients
    Ochagavia, A
    Baigorri, F
    Mendoza, D
    Saura, P
    Artigas, A
    INTENSIVE CARE MEDICINE, 2002, 28 : S40 - S40
  • [43] Early Prediction Of Clinically Significant Deterioration Of Critically Ill Patients
    Pessach, I. M.
    Nimrod, A.
    Lipsky, A.
    Talmor, D.
    O'Connor, M. F.
    Segal, E.
    Matot, I.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [44] Prediction of tracheostomy in critically ill trauma patients: a systematic review
    Casamento, Andrew J.
    Bebee, Bronwyn
    Glassford, Neil J.
    Bellomo, Rinaldo
    CRITICAL CARE AND RESUSCITATION, 2018, 20 (04) : 258 - 267
  • [45] Copeptin for prediction of acute renal failure in critically ill patients
    Meyer, Brigitte
    Wexberg, Paul
    Berger, Rudolf
    Heinz, Gottfried
    Pacher, Richard
    Huelsmann, Martin
    Bergmann, Andreas
    Morgenthaler, Nils
    Struck, Joachim
    CRITICAL CARE MEDICINE, 2007, 35 (12) : A241 - A241
  • [46] Outcome prediction model for very elderly critically ill patients
    Nierman, DM
    Schechter, CB
    Cannon, LM
    Meier, DE
    CRITICAL CARE MEDICINE, 2001, 29 (10) : 1853 - 1859
  • [47] The role of flumazenil in the critically ill
    Park, GR
    Navapurkar, V
    Ferenci, P
    ACTA ANAESTHESIOLOGICA SCANDINAVICA, 1995, 39 : 23 - 34
  • [48] Iron deficiency in critically ill patients: highlighting the role of hepcidin
    Heming, Nicholas
    Montravers, Philippe
    Lasocki, Sigismond
    CRITICAL CARE, 2011, 15 (02):
  • [49] Role of cardiac nuclear imaging in the management of critically ill patients
    Fattah, Alia
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2008, 35 (09) : 1589 - 1592
  • [50] ABDOMINAL MONITORING OF CRITICALLY ILL PATIENTS: THE ROLE OF CT SCANS
    Lara, T. R. D.
    Barbas, C. S. V.
    Perroni de Oliveira, M.
    Colombari, F.
    Sanches, P. R.
    Scherer, P. F.
    Moraes, L. C.
    Leite, G. O.
    Caruso, R.
    Funari, M.
    Santos, O. F. P.
    Knobel, E.
    INTENSIVE CARE MEDICINE, 2010, 36 : S272 - S272