Prediction on critically ill patients: The role of "big data"

被引:10
|
作者
Bulgarelli, Lucas [1 ,2 ]
Deliberato, Rodrigo Octavio [1 ,3 ]
Johnson, Alistair E. W. [1 ]
机构
[1] MIT, MIT Crit Data, Lab Computat Physiol, Harvard MIT Hlth Sci & Technol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Hosp Israelita Albert Einstein, Big Data Analyt Dept, Sao Paulo, Brazil
[3] Endpoint Hlth Inc, Dept Clin Data Sci Res, Palo Alto, CA USA
基金
美国国家卫生研究院;
关键词
Critical Care; Outcome prediction; Machine learning; ARTIFICIAL NEURAL-NETWORKS; CHRONIC HEALTH EVALUATION; ACUTE PHYSIOLOGY SCORE; INTENSIVE-CARE-UNIT; HOSPITAL MORTALITY; ORGAN DYSFUNCTION; RISK PREDICTION; SEPSIS; APACHE; MODEL;
D O I
10.1016/j.jcrc.2020.07.017
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Accurate outcome prediction in Intensive Care Units (ICUs) would allow for better treatment planning, risk adjustment of study populations, and overall improvements in patient care. In the past, prognostic models have focused on mortality using simple ordinal severity of illness scores which could be tabulated manually by a human. With the improvements in computing power and proliferation of electronic medical records, entirely new approaches have become possible. Here we review the latest advances in outcome prediction, paying close attention to methods which are widely applicable and provide a high-level overview of the challenges the field currently faces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:64 / 68
页数:5
相关论文
共 50 条
  • [31] Role of cardiac troponin as a prognosticator in critically ill patients
    Turley, AJ
    Gedney, JA
    CRITICAL CARE, 2005, 9 (06):
  • [32] A Role for the Anesthesiologist: Interhospital Movement of Critically Ill Patients
    Best, Michael
    Fox, William
    Copeland, Curtis
    CURRENT ANESTHESIOLOGY REPORTS, 2025, 15 (01)
  • [33] Probiotics in Critically Ill Patients More Data Are Needed
    Gu, Wan-Jie
    Liu, Jing-Chen
    CHEST, 2013, 143 (03) : 873 - 874
  • [34] Is there a role for continuous esophageal Doppler in critically ill patients?
    JMC Coelho
    L Brauer
    ACKB Amaral
    LU Taniguchi
    M Park
    LM Cruz
    Critical Care, 7 (Suppl 3):
  • [35] The role of early tracheostomy in critically ill neurosurgical patients
    Teoh, WHL
    Goh, KYC
    Chan, C
    ANNALS ACADEMY OF MEDICINE SINGAPORE, 2001, 30 (03) : 234 - 238
  • [36] Transportability of bacterial infection prediction models for critically ill patients
    Eickelberg, Garrett
    Sanchez-Pinto, Lazaro Nelson
    Kline, Adrienne Sarah
    Luo, Yuan
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (01) : 98 - 108
  • [37] Height Prediction From Ulna Length of Critically Ill Patients
    Tarnowski, Micheli S.
    Rabito, Estela I.
    Fernandes, Daieni
    Rosa, Mariane
    Oliveira, Manoela L.
    Hirakata, Vania N.
    Marcadenti, Aline
    NUTRITION IN CLINICAL PRACTICE, 2018, 33 (06) : 887 - 892
  • [38] Prediction Equations to Determine Caloric Requirements in Critically Ill Patients
    McArthur, Charles D.
    RESPIRATORY CARE, 2009, 54 (04) : 453 - 454
  • [39] Atrial Fibrillation Prediction from Critically Ill Sepsis Patients
    Bashar, Syed Khairul
    Ding, Eric Y.
    Walkey, Allan J.
    McManus, David D.
    Chon, Ki H.
    BIOSENSORS-BASEL, 2021, 11 (08):
  • [40] Evaluation of a Model for Glycemic Prediction in Critically Ill Surgical Patients
    Pappada, Scott M.
    Cameron, Brent D.
    Tulman, David B.
    Bourey, Raymond E.
    Borst, Marilyn J.
    Olorunto, William
    Bergese, Sergio D.
    Evans, David C.
    Stawicki, Stanislaw P. A.
    Papadimos, Thomas J.
    PLOS ONE, 2013, 8 (07):