Prediction on critically ill patients: The role of "big data"

被引:10
|
作者
Bulgarelli, Lucas [1 ,2 ]
Deliberato, Rodrigo Octavio [1 ,3 ]
Johnson, Alistair E. W. [1 ]
机构
[1] MIT, MIT Crit Data, Lab Computat Physiol, Harvard MIT Hlth Sci & Technol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Hosp Israelita Albert Einstein, Big Data Analyt Dept, Sao Paulo, Brazil
[3] Endpoint Hlth Inc, Dept Clin Data Sci Res, Palo Alto, CA USA
基金
美国国家卫生研究院;
关键词
Critical Care; Outcome prediction; Machine learning; ARTIFICIAL NEURAL-NETWORKS; CHRONIC HEALTH EVALUATION; ACUTE PHYSIOLOGY SCORE; INTENSIVE-CARE-UNIT; HOSPITAL MORTALITY; ORGAN DYSFUNCTION; RISK PREDICTION; SEPSIS; APACHE; MODEL;
D O I
10.1016/j.jcrc.2020.07.017
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Accurate outcome prediction in Intensive Care Units (ICUs) would allow for better treatment planning, risk adjustment of study populations, and overall improvements in patient care. In the past, prognostic models have focused on mortality using simple ordinal severity of illness scores which could be tabulated manually by a human. With the improvements in computing power and proliferation of electronic medical records, entirely new approaches have become possible. Here we review the latest advances in outcome prediction, paying close attention to methods which are widely applicable and provide a high-level overview of the challenges the field currently faces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:64 / 68
页数:5
相关论文
共 50 条
  • [11] Role of automated pupillometry in critically ill patients
    Morelli, Paola
    Oddo, Mauro
    Ben-Hamouda, Nawfel
    MINERVA ANESTESIOLOGICA, 2019, 85 (09) : 995 - 1002
  • [12] COMMENTS ON OUTCOME PREDICTION IN CRITICALLY ILL PATIENTS - RESPONSE
    VANLANSCHOT, JJB
    FEENSTRA, BWA
    VERMEIJ, CG
    BRUINING, HA
    INTENSIVE CARE MEDICINE, 1988, 14 (06) : 676 - 677
  • [13] Prediction of acute hypertensive episodes in critically ill patients
    Itzhak, Nevo
    Pessach, Itai M.
    Moskovitch, Robert
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 139
  • [14] Extrasystoles for fluid responsiveness prediction in critically ill patients
    Vistisen, Simon Tilma
    Krog, Martin Buhl
    Elkmann, Thomas
    Vallentin, Mikael Fink
    Scheeren, Thomas W. L.
    Solling, Christoffer
    JOURNAL OF INTENSIVE CARE, 2018, 6
  • [15] Prediction of survival of critically ill patients by admission comorbidity
    Poses, RM
    McClish, DK
    Smith, WR
    Bekes, C
    Scott, WE
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 1996, 49 (07) : 743 - 747
  • [16] Extrasystoles for fluid responsiveness prediction in critically ill patients
    Simon Tilma Vistisen
    Martin Buhl Krog
    Thomas Elkmann
    Mikael Fink Vallentin
    Thomas W. L. Scheeren
    Christoffer Sølling
    Journal of Intensive Care, 6
  • [17] The development of a glucose prediction model in critically ill patients
    van den Boorn, M.
    Lagerburg, V
    van Steen, S. C. J.
    Wedzinga, R.
    Bosman, R. J.
    van der Voort, P. H. J.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 206
  • [18] Prediction of outcome for critically ill patients with unexplained hypotension
    Heidenreich, PA
    Foster, E
    Cohen, NH
    CRITICAL CARE MEDICINE, 1996, 24 (11) : 1835 - 1840
  • [19] Longitudinal Prediction of Metabolic Rate in Critically Ill Patients
    Frankenfield, David C.
    Ashcraft, Christine M.
    Galvan, Dan A.
    JOURNAL OF PARENTERAL AND ENTERAL NUTRITION, 2012, 36 (06) : 700 - 712
  • [20] Hyperchloremia in critically ill patients: association with outcomes and prediction using electronic health record data
    Yeh, Pete
    Pan, Yiheng
    Sanchez-Pinto, L. Nelson
    Luo, Yuan
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (Suppl 14)