Prediction on critically ill patients: The role of "big data"

被引:10
作者
Bulgarelli, Lucas [1 ,2 ]
Deliberato, Rodrigo Octavio [1 ,3 ]
Johnson, Alistair E. W. [1 ]
机构
[1] MIT, MIT Crit Data, Lab Computat Physiol, Harvard MIT Hlth Sci & Technol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Hosp Israelita Albert Einstein, Big Data Analyt Dept, Sao Paulo, Brazil
[3] Endpoint Hlth Inc, Dept Clin Data Sci Res, Palo Alto, CA USA
基金
美国国家卫生研究院;
关键词
Critical Care; Outcome prediction; Machine learning; ARTIFICIAL NEURAL-NETWORKS; CHRONIC HEALTH EVALUATION; ACUTE PHYSIOLOGY SCORE; INTENSIVE-CARE-UNIT; HOSPITAL MORTALITY; ORGAN DYSFUNCTION; RISK PREDICTION; SEPSIS; APACHE; MODEL;
D O I
10.1016/j.jcrc.2020.07.017
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Accurate outcome prediction in Intensive Care Units (ICUs) would allow for better treatment planning, risk adjustment of study populations, and overall improvements in patient care. In the past, prognostic models have focused on mortality using simple ordinal severity of illness scores which could be tabulated manually by a human. With the improvements in computing power and proliferation of electronic medical records, entirely new approaches have become possible. Here we review the latest advances in outcome prediction, paying close attention to methods which are widely applicable and provide a high-level overview of the challenges the field currently faces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:64 / 68
页数:5
相关论文
共 77 条
[41]  
Li YK, 2018, IEEE INT C BIOINFORM, P683, DOI [10.1109/BIBM.2018.8621574, 10.1109/bibm.2018.8621574]
[42]   False-Positive Rate of AKI Using Consensus Creatinine-Based Criteria [J].
Lin, Jennie ;
Fernandez, Hilda ;
Shashaty, Michael G. S. ;
Negoianu, Dan ;
Testani, Jeffrey M. ;
Berns, Jeffrey S. ;
Parikh, Chirag R. ;
Wilson, F. Perry .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2015, 10 (10) :1723-1731
[43]  
Lipton ZC, 2020, ARXIV151103677CS
[44]   Predicting risk of unplanned hospital readmission in survivors of critical illness: a population-level cohort study [J].
Lone, Nazir I. ;
Lee, Robert ;
Salisbury, Lisa ;
Donaghy, Eddie ;
Ramsay, Pamela ;
Rattray, Janice ;
Walsh, Timothy S. .
THORAX, 2019, 74 (11) :1046-1054
[45]   Why rankings of biomedical image analysis competitions should be interpreted with care [J].
Maier-Hein, Lena ;
Eisenmann, Matthias ;
Reinke, Annika ;
Onogur, Sinan ;
Stankovic, Marko ;
Scholz, Patrick ;
Arbel, Tal ;
Bogunovic, Hrvoje ;
Bradley, Andrew P. ;
Carass, Aaron ;
Feldmann, Carolin ;
Frangi, Alejandro F. ;
Full, Peter M. ;
van Ginneken, Bram ;
Hanbury, Allan ;
Honauer, Katrin ;
Kozubek, Michal ;
Landman, Bennett A. ;
Marz, Keno ;
Maier, Oskar ;
Maier-Hein, Klaus ;
Menze, Bjoern H. ;
Muller, Henning ;
Neher, Peter F. ;
Niessen, Wiro ;
Rajpoot, Nasir ;
Sharp, Gregory C. ;
Sirinukunwattana, Korsuk ;
Speidel, Stefanie ;
Stock, Christian ;
Stoyanov, Danail ;
Taha, Abdel Aziz ;
Van der Sommen, Fons ;
Wang, Ching-Wei ;
Weber, Marc-Andre ;
Zheng, Guoyan ;
Jannin, Pierre ;
Kopp-Schneider, Annette .
NATURE COMMUNICATIONS, 2018, 9
[46]   Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data [J].
Marafino, Ben J. ;
Park, Miran ;
Davies, Jason M. ;
Thombley, Robert ;
Luft, Harold S. ;
Sing, David C. ;
Kazi, Dhruv S. ;
DeJong, Colette ;
Boscardin, W. John ;
Dean, Mitzi L. ;
Dudley, R. Adams .
JAMA NETWORK OPEN, 2018, 1 (08)
[47]   MULTIPLE ORGAN DYSFUNCTION SCORE - A RELIABLE DESCRIPTOR OF A COMPLEX CLINICAL OUTCOME [J].
MARSHALL, JC ;
COOK, DJ ;
CHRISTOU, NV ;
BERNARD, GR ;
SPRUNG, CL ;
SIBBALD, WJ .
CRITICAL CARE MEDICINE, 1995, 23 (10) :1638-1652
[48]   Dynamic Data During Hypotensive Episode Improves Mortality Predictions Among Patients With Sepsis and Hypotension [J].
Mayaud, Louis ;
Lai, Peggy S. ;
Clifford, Gari D. ;
Tarassenko, Lionel ;
Celi, Leo Anthony ;
Annane, Djillali .
CRITICAL CARE MEDICINE, 2013, 41 (04) :954-962
[49]   Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury [J].
Mehta, Ravindra L. ;
Kellum, John A. ;
Shah, Sudhir V. ;
Molitoris, Bruce A. ;
Ronco, Claudio ;
Warnock, David G. ;
Levin, Adeera .
CRITICAL CARE, 2007, 11 (02)
[50]   Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records [J].
Miotto, Riccardo ;
Li, Li ;
Kidd, Brian A. ;
Dudley, Joel T. .
SCIENTIFIC REPORTS, 2016, 6