Coupling of coherent misfit strain and composition distributions in core-shell Ge/Ge1-xSnx nanowire light emitters

被引:24
作者
Meng, A. C. [1 ]
Braun, M. R. [1 ]
Wang, Y. [2 ,5 ]
Fenrich, C. S. [1 ]
Xue, M. [1 ]
Diercks, D. R. [6 ]
Gorman, B. P. [6 ]
Richard, M-, I [7 ,8 ]
Marshall, A. F. [4 ]
Cai, W. [2 ]
Harris, J. S. [3 ]
McIntyre, P. C. [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Stanford Nano Shared Facil, Stanford, CA 94305 USA
[5] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[6] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA
[7] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[8] Aix Marseille Univ, Univ Toulon, CNRS, IM2NP UMR 7334, F-13397 Marseille, France
基金
美国国家科学基金会;
关键词
Germanium-tin; Core-shell nanowire; Strain; Optoelectronics; QUANTUM DOTS; GERMANIUM; SILICON; GROWTH; DEVICE; SI;
D O I
10.1016/j.mtnano.2019.01.001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Core-shell Ge/Ge1-xSnx nanowires exhibit strong room temperature light emission under optical pumping in photoluminescence compared with Ge as a consequence of the elastic strain distribution across the coherent core-shell interface. We examine the interplay between strain and Sn composition distributions to gain insight into how these affect optical properties. There is a two-fold synergistic effect on the optical properties produced by the core-shell nanowire geometry. First, the Ge core acts as an elastically compliant substrate for growth of an axially lattice-matched epitaxial Ge/Ge1-xSnx shell, which facilitates growth of high-quality single-crystal Ge/Ge1-xSnx having intense photoluminescence. At the same time, tensile misfit strain in the Ge core serves to decrease the direct gap transition energy with respect to the indirect gap transition energy, thus enhancing its optical emission. Although characterization of strain in core-shell nanowire cross sections is complicated, choice of thinning orientation allows accurate, spatially localized strain analysis in the electron microscope. Phase field simulations provide an estimate of the expected strain, which matches well with experimental results, and they explain the stability of six Sn-poor spokes that form approximately 60 degrees apart during growth of the Ge/Ge1-xSnx shell by considering the elastic strain energy. The evolution of the strain distribution during shell growth is also simulated using the phase field model. The coupling of core-shell strain arising from Sn incorporation in the shell and the resulting enhancement of optical properties makes this core-shell nanowire architecture promising for group IV semiconductor nanophotonics. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 53 条
[1]   An optically pumped 2.5 μm GeSn laser on Si operating at 110 K [J].
Al-Kabi, Sattar ;
Ghetmiri, Seyed Amir ;
Margetis, Joe ;
Pham, Thach ;
Zhou, Yiyin ;
Dou, Wei ;
Collier, Bria ;
Quinde, Randy ;
Du, Wei ;
Mosleh, Aboozar ;
Liu, Jifeng ;
Sun, Greg ;
Soref, Richard A. ;
Tolle, John ;
Li, Baohua ;
Mortazavi, Mansour ;
Naseem, Hameed A. ;
Yu, Shui-Qing .
APPLIED PHYSICS LETTERS, 2016, 109 (17)
[2]   Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires [J].
Albani, Marco ;
Assali, Simone ;
Verheijen, Marcel A. ;
Koelling, Sebastian ;
Bergamaschini, Roberto ;
Pezzoli, Fabio ;
Bakkers, Erik P. A. M. ;
Miglio, Leo .
NANOSCALE, 2018, 10 (15) :7250-7256
[3]   Study of the temperature distribution in Si nanowires under microscopic laser beam excitation [J].
Anaya, J. ;
Torres, A. ;
Martin-Martin, A. ;
Souto, J. ;
Jimenez, J. ;
Rodriguez, A. ;
Rodriguez, T. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 113 (01) :167-176
[4]  
[Anonymous], 2010, THESIS
[5]   Growth and Optical Properties of Direct Band Gap Ge/Ge0.87Sn0.13 Core/Shell Nanowire Arrays [J].
Assali, S. ;
Dijkstra, A. ;
Li, A. ;
Koelling, S. ;
Verheijen, M. A. ;
Gagliano, L. ;
von den Driesch, N. ;
Buca, D. ;
Koenraad, P. M. ;
Haverkort, J. E. M. ;
Bakkers, E. P. A. M. .
NANO LETTERS, 2017, 17 (03) :1538-1544
[6]   Quantum Confined Stark Effect in a GaAs/AlGaAs Nanowire Quantum Well Tube Device: Probing Exciton Localization [J].
Badada, Bekele H. ;
Shi, Teng ;
Jackson, Howard E. ;
Smith, Leigh M. ;
Zheng, Changlin ;
Etheridge, Joanne ;
Gao, Qiang ;
Tan, H. Hoe ;
Jagadish, Chennupati .
NANO LETTERS, 2015, 15 (12) :7847-7852
[7]   Tunable band structure in diamond-cubic tin-germanium alloys grown on silicon substrates [J].
Bauer, MR ;
Tolle, J ;
Bungay, C ;
Chizmeshya, AVG ;
Smith, DJ ;
Menéndez, J ;
Kouvetakis, J .
SOLID STATE COMMUNICATIONS, 2003, 127 (05) :355-359
[8]   Plasmonic Waveguide-Integrated Nanowire Laser [J].
Bermudez-Urena, Esteban ;
Tutuncuoglu, Gozde ;
Cuerda, Javier ;
Smith, Cameron L. C. ;
Bravo-Abad, Jorge ;
Bozhevolnyi, Sergey I. ;
Fontcuberta i Morral, Anna ;
Garcia-Vidal, Francisco J. ;
Quidant, Romain .
NANO LETTERS, 2017, 17 (02) :747-754
[9]   THE ELASTIC CONSTANTS OF GERMANIUM SINGLE CRYSTALS [J].
BOND, WL ;
MASON, WP ;
MCSKIMIN, HJ ;
OLSEN, KM ;
TEAL, GK .
PHYSICAL REVIEW, 1950, 78 (02) :176-176
[10]   QUANTITATIVE-ANALYSIS OF THIN SPECIMENS [J].
CLIFF, G ;
LORIMER, GW .
JOURNAL OF MICROSCOPY-OXFORD, 1975, 103 (MAR) :203-207