CROSSED MODULES IN THE CATEGORY OF LODAY QD-RINEHART ALGEBRAS

被引:1
作者
Casas, J. M. [1 ]
Cetin, S. [2 ]
Uslu, E. O. [1 ]
机构
[1] Univ Vigo, Dept Appl Math 1, EE Forestal, Pontevedra 36005, Spain
[2] Burdur Mehmet Akif Ersoy Univ, Dept Math, Fac Arts & Sci, Burdur, Turkey
关键词
Loday QD-algebroid; Loday QD-Rinehart algebra; derivation; abelian extension; crossed module; cohomology; NAMBU-POISSON; LEIBNIZ; EXTENSIONS;
D O I
10.4310/HHA.2020.v22.n2.a21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the notion of Loday QD-Rinehart algebra as an abstraction of Loday QD-algebroids. Additionally, we study cohomology groups, derivations, abelian extensions and crossed modules of these algebraic structures and analyze the relationships between them.
引用
收藏
页码:347 / 366
页数:20
相关论文
共 37 条
  • [2] Borceux F, 2005, COMMENT MATH UNIV CA, V46, P235
  • [3] Normal subobjects and Abelian objects in protomodular categories
    Bourn, D
    [J]. JOURNAL OF ALGEBRA, 2000, 228 (01) : 143 - 164
  • [4] Bourn D., 2004, GEORGIAN MATH J, V11, P645, DOI DOI 10.1515/GMJ.2004.645
  • [5] Universal Strict General Actors and Actors in Categories of Interest
    Casas, J. M.
    Datuashvili, T.
    Ladra, M.
    [J]. APPLIED CATEGORICAL STRUCTURES, 2010, 18 (01) : 85 - 114
  • [6] Left-right noncommutative Poisson algebras
    Casas, Jose M.
    Datuashvili, Tamar
    Ladra, Manuel
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (01): : 57 - 78
  • [7] Couchman J., 2017, THESIS
  • [8] Demir I., 2014, Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics Contemporary Mathematics, V623, P41
  • [9] Garcia-Beltran D., 2011, J GEN LIE THEORY APP, V5, P10
  • [10] Geometrical mechanics on algebroids
    Grabowska, Katarzyna
    Urbanski, Pawel
    Grabowski, Janusz
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 559 - 575