Stability of n-vortices in the Ginzburg-Landau equation

被引:2
作者
Coleman, J [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
关键词
D O I
10.1090/S0002-9939-00-05695-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the class of n-vortex solutions to the time-independent Ginzburg-Landau equation on R-2. We prove an inequality governing the solutions of a particular boundary value problem. This inequality is crucial for an elementary proof by Ovchinnikov and Sigal that such n-vortices are unstable in the case \n\ greater than or equal to 2.
引用
收藏
页码:1567 / 1569
页数:3
相关论文
共 8 条
[1]  
BETHUEL F, 1994, GINZBURGLANDAU VORTI
[2]   SHOOTING METHOD FOR VORTEX SOLUTIONS OF A COMPLEX-VALUED GINZBURG-LANDAU EQUATION [J].
CHEN, XF ;
ELLIOTT, CM ;
QI, T .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1075-1088
[3]  
HAGAN P, 1982, SIAM J APPL MATH, V42, P4762
[4]  
HERVE RM, 1994, ANN I H POINCARE-AN, V11, P427
[5]  
OVCHINNIKOV YM, 1997, PARTIAL DIFFERENTIAL, P199
[6]  
Protter M.H., 1967, Maximum Principles in Differential Equations
[7]  
SHAFRIR I, 1994, CR ACAD SCI I-MATH, V318, P327
[8]  
Struwe M., 1990, Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems