A Riccati-based primal interior point solver for multistage stochastic programming

被引:28
作者
Blomvall, J [1 ]
Lindberg, PO [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
dynamic programming; finance; interior point methods; stochastic programming;
D O I
10.1016/S0377-2217(02)00301-6
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a new method for certain multistage stochastic programs with linear or nonlinear objective function, combining a primal interior point approach with a linear-quadratic control problem over the scenario tree. The latter problem, which is the direction finding problem for the barrier subproblem is solved through dynamic programming using Riccati equations. In this way we combine the low iteration count of interior point methods with an efficient solver for the subproblems. The computational results are promising, We have solved a financial problem with 1,000,000 scenarios, 15,777,740 variables and 16,888,850 constraints in 20 hours on a moderate computer. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:452 / 461
页数:10
相关论文
共 11 条
[1]  
Bertsekas DP, 2012, DYNAMIC PROGRAMMING, V2
[2]  
Birge J. R., 1997, INFORMS Journal on Computing, V9, P111, DOI 10.1287/ijoc.9.2.111
[3]  
Birge J. R., 1992, Computational Optimization and Applications, V1, P245, DOI 10.1007/BF00249637
[4]  
BLOMVALL J, IN PRESS J EC DYNAMI
[5]   High-performance computing for asset liability management [J].
Gondzio, J ;
Kouwenberg, R .
OPERATIONS RESEARCH, 2001, 49 (06) :879-891
[6]   A NEW INTERPRETATION OF INFORMATION RATE [J].
KELLY, JL .
BELL SYSTEM TECHNICAL JOURNAL, 1956, 35 (04) :917-926
[7]  
Neumann J.V., 1953, Theory of games and economic behavior
[8]  
SALINGER DH, 1999, DYNAMIC SPLITTING AL
[9]  
STEINBACH MC, 2000, 0015 ZIB
[10]   L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING [J].
VANSLYKE, RM ;
WETS, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1969, 17 (04) :638-+