PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere

被引:215
作者
Zhang, Jianbing [1 ,4 ]
Gao, Jianbo [2 ]
Church, Carena P. [2 ,3 ]
Miller, Elisa M. [4 ]
Luther, Joseph M. [4 ]
Klimov, Victor I. [2 ]
Beard, Matthew C. [4 ]
机构
[1] Natl Renewable Energy Lab, Ctr Adv Solar Photophys, Golden, CO 80401 USA
[2] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA
[3] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[4] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
关键词
Quantum Dots; Solar Energy Conversion; Cation exchange; Stability; PbSe; CARRIER MULTIPLICATION; SURFACE PASSIVATION; CATION-EXCHANGE; NANOCRYSTALS; NANOMATERIALS; GENERATION; STABILITY; CHEMISTRY;
D O I
10.1021/nl503085v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal quantum dots (QDs) are promising candidates for the next generation of photovoltaic (PV) technologies. Much of the progress in QD PVs is based on using PbS QDs, partly because they are stable under ambient conditions. There is considerable interest in extending this work to PbSe QDs, which have shown an enhanced photocurrent due to multiple exciton generation (MEG). One problem complicating such device-based studies is a poor stability of PbSe QDs toward exposure to ambient air. Here we develop a direct cation exchange synthesis to produce PbSe QDs with a large range of sizes and with in situ chloride and cadmium passivation. The synthesized QDs have excellent air stability, maintaining their photoluminescence quantum yield under ambient conditions for more than 30 days. Using these QDs, we fabricate high-performance solar cells without any protection and demonstrate a power conversion efficiency exceeding 6%, which is a current record for PbSe QD solar cells.
引用
收藏
页码:6010 / 6015
页数:6
相关论文
共 38 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine [J].
Bae, Wan Ki ;
Joo, Jin ;
Padilha, Lazaro A. ;
Won, Jonghan ;
Lee, Doh C. ;
Lin, Qianglu ;
Koh, Weon-kyu ;
Luo, Hongmei ;
Klimov, Victor I. ;
Pietryga, Jeffrey M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :20160-20168
[3]   Third Generation Photovoltaics based on Multiple Exciton Generation in Quantum Confined Semiconductors [J].
Beard, Matthew C. ;
Luther, Joseph M. ;
Semonin, Octavi E. ;
Nozik, Arthur J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (06) :1252-1260
[4]   Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion [J].
Beard, Matthew C. ;
Midgett, Aaron G. ;
Hanna, Mark C. ;
Luther, Joseph M. ;
Hughes, Barbara K. ;
Nozik, Arthur J. .
NANO LETTERS, 2010, 10 (08) :3019-3027
[5]   Cation Exchange: A Versatile Tool for Nanomaterials Synthesis [J].
Beberwyck, Brandon J. ;
Surendranath, Yogesh ;
Alivisatos, A. Paul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (39) :19759-19770
[6]  
Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/nmat3984, 10.1038/NMAT3984]
[7]   Preventing Interfacial Recombination in Colloidal Quantum Dot Solar Cells by Doping the Metal Oxide [J].
Ehrler, Bruno ;
Musselman, Kevin P. ;
Boehm, Marcus L. ;
Morgenstern, Frederik S. F. ;
Vaynzof, Yana ;
Walker, Brian J. ;
MacManus-Driscoll, Judith L. ;
Greenham, Neil C. .
ACS NANO, 2013, 7 (05) :4210-4220
[8]   Chemical transformations of nanomaterials for energy applications [J].
Fayette, M. ;
Robinson, R. D. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (17) :5965-5978
[9]   n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells [J].
Gao, Jianbo ;
Perkins, Craig L. ;
Luther, Joseph M. ;
Hanna, Mark C. ;
Chen, Hsiang-Yu ;
Semonin, Octavi E. ;
Nozik, Arthur J. ;
Ellingson, Randy J. ;
Beard, Matthew C. .
NANO LETTERS, 2011, 11 (08) :3263-3266
[10]   25th Anniversary Article: Ion Exchange in Colloidal Nanocrystals [J].
Gupta, Shuchi ;
Kershaw, Stephen V. ;
Rogach, Andrey L. .
ADVANCED MATERIALS, 2013, 25 (48) :6923-6943