Bifurcation control of Hodgkin-Huxley model of nerve system

被引:0
作者
Fei, Xiangyang [1 ]
Jiangwang [1 ]
Chen, Liangquan [1 ]
机构
[1] Tianjin Univ, Sch Elect & Automat Eng, Tianjin 300072, Peoples R China
来源
WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS | 2006年
关键词
Hodgkin-Huxley model; Hopf bifurcation; nonlinear system; feedback control; washout filter;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bifurcation control has attracted increasing attention in recent years. It deals with the modification of the bifurcation characteristics of a parameterized nonlinear system by a judiciously designed control input. In this paper, we consider the problem of dynamic feedback control of bifurcations. The object we study is the Hodgkin-Huxley (HH) equations. Here we analyse two kinds of bifurcation in HH equations and use two different control methods to eliminate bifurcations. The control task can be either shifting an existing Hopf Bifurcation or creating a new Hopf bifurcation. Some computer simulations are included to illustrate the methodology and to verify the theoretical results.
引用
收藏
页码:294 / 294
页数:1
相关论文
共 50 条
[21]   Bifurcation Analysis of a Two-Dimensional Simplified Hodgkin-Huxley Model Exposed to External Electric Fields [J].
Wang, Hu ;
Yu, Yongguang ;
Wang, Sha ;
Yu, Junzhi .
NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 :288-295
[22]   A nerve model of greatly increased energy-efficiency and encoding flexibility over the Hodgkin-Huxley model [J].
Fohlmeister, Juergen F. .
BRAIN RESEARCH, 2009, 1296 :225-233
[23]   Extending the Conditions of Application of an Inversion of the Hodgkin-Huxley Gating Model [J].
Raba, Ashley E. ;
Cordeiro, Jonathan M. ;
Antzelevitch, Charles ;
Beaumont, Jacques .
BULLETIN OF MATHEMATICAL BIOLOGY, 2013, 75 (05) :752-773
[24]   Edge detection based on Hodgkin-Huxley neuron model simulation [J].
Yedjour, Hayat ;
Meftah, Boudjelal ;
Lezoray, Olivier ;
Benyettou, Abdelkader .
COGNITIVE PROCESSING, 2017, 18 (03) :315-323
[25]   THE METHOD OF HYBRID FUNCTIONS FOR THE NUMERICAL SOLUTION OF THE HODGKIN-HUXLEY MODEL [J].
Ganguly, Anindita ;
Saha, Manika ;
Ghosh, Aniruddha ;
Maity, Ursa ;
Kucera, Jan P. ;
Raha, Soumyendu .
IFAC PAPERSONLINE, 2022, 55 (01) :623-630
[26]   Parameter estimation of the Hodgkin-Huxley gating model: An inversion procedure [J].
Wang, GJ ;
Beaumont, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (04) :1249-1267
[27]   Digital realization of the proposed linear model of the Hodgkin-Huxley neuron [J].
Amiri, Masoud ;
Nazari, Soheila ;
Faez, Karim .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2019, 47 (03) :483-497
[28]   State Estimation of Hodgkin-Huxley Model Based on Membrane Potential [J].
Liao, Fang ;
Lou, Xu-Y. .
INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA 2016), 2016, :526-531
[29]   THE STOCHASTIC, MARKOVIAN, HODGKIN-HUXLEY TYPE OF MATHEMATICAL MODEL OF THE NEURON [J].
Swietlicka, A. ;
Gugala, K. ;
Jurkowlaniec, A. ;
Sniatala, P. ;
Rybarczyk, A. .
NEURAL NETWORK WORLD, 2015, 25 (03) :219-239
[30]   Dynamic analysis of neural signal based on Hodgkin-Huxley model [J].
Yao, Wei ;
Li, Yingchen ;
Ou, Zhihao ;
Sun, Mingzhu ;
Ma, Qiongxu ;
Ding, Guanghong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) :4676-4687