Estimation for fractal signals based on dyadic wavelet

被引:2
作者
Liu, F. [1 ]
Tang, Y. Y.
机构
[1] Xian Jiaotong Univ, Dept Informat Sci, Xian 710049, Peoples R China
[2] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2005年 / 2卷 / 02期
关键词
dyadic wavelet; fractal signal; 1/f processes; Markov processes;
D O I
10.1587/elex.2.54
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using Markov processes, the representation of fractal signals based on the dyadic wavelet transform (DYWT) is established. Then a new method of the estimation for fractal signals embedded a white noise is proposed. The numerical comparisons with previous method are shown.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 6 条
[1]   Estimation of fractal signals using wavelets and filter banks [J].
Hirchoren, GA ;
D'Attellis, CE .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (06) :1624-1630
[2]   Estimation of fractional Brownian motion with multiresolution Kalman filter banks [J].
Hirchoren, GA ;
D'Attellis, CE .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) :1431-1434
[3]  
Mallat S., 1997, WAVELET TOUR SIGNAL
[4]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[5]   ESTIMATION OF FRACTAL SIGNALS FROM NOISY MEASUREMENTS USING WAVELETS [J].
WORNELL, GW ;
OPPENHEIM, AV .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (03) :611-623
[6]   A KARHUNEN-LOEVE-LIKE EXPANSION FOR 1/F PROCESSES VIA WAVELETS [J].
WORNELL, GW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :859-861