Knowledge Represention for Context and Sentiment Analysis

被引:0
作者
Fakinlede, Ireti [1 ]
Kumar, Vive [1 ]
Wen, Dunwei [1 ]
机构
[1] Athabasca Univ, Sch Comp & Informat Syst, Athabasca, AB, Canada
来源
2013 IEEE 13TH INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2013) | 2013年
关键词
knowledge representation; sentiment analysis; anthropomorphic agents; social context; semantic roles; natural language processing;
D O I
10.1109/ICALT.2013.158
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a knowledge representation framework for natural language understanding. Here we propose an automated knowledge acquisition mechanism that mirrors information extraction in human-human interaction. This framework utilizes knowledge based automatic role labeling and automatic concept learning together with a conceptual structure that captures intent and context. The resulting framework is to be used to improve the agent's ability to engage in social interaction with humans.
引用
收藏
页码:493 / 494
页数:2
相关论文
共 6 条