Butanol fermentation from microalgae-derived carbohydrates after ionic liquid extraction

被引:57
作者
Gao, Kai [1 ]
Orr, Valerie [1 ]
Rehmann, Lars [1 ,2 ]
机构
[1] Univ Western Ontario, Dept Chem & Biochem Engn, 1151 Richmond St, London, ON N6A 3K7, Canada
[2] Rhein Westfal TH Aachen, Dept Biochem Engn, AVT Aachener Verfahrenstech, Worringer Weg 1, D-52074 Aachen, Germany
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Lipid-extracted algae; Ionic liquid; Hexane; ABE fermentation; Acid hydrolysis; CLOSTRIDIUM-ACETOBUTYLICUM; BIOMASS; ACETONE; ETHANOL; ALGAE; ACID; PRETREATMENT; FEEDSTOCKS; CONVERSION; RESIDUES;
D O I
10.1016/j.biortech.2016.01.036
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Lipid extracted algae (LEA) is an attractive feedstock for alcohol fuel production as it is a non-food crop which is largely composed of readily fermented carbohydrates like starch rather than the more recalcitrant lignocellulosic materials currently under intense development. This study compares the suitability of ionic liquid extracted algae (ILEA) and hexane extracted algae (HEA) for acetone, butanol, and ethanol (ABE) fermentation. The highest butanol titers (8.05 g L-1) were achieved with the fermentation of the acid hydrolysates of HEA, however, they required detoxification to support product formation after acid hydrolysis while ILEA did not. Direct ABE fermentation of ILEA and HEA (without detoxification) starches resulted in a butanol titer of 4.99 and 6.63 g L-1, respectively, which significantly simplified the LEA to butanol process. The study demonstrated the compatibility of producing biodiesel and butanol from a single feedstock which may help reduce the feedstock costs of each individual process. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 35 条
[1]   Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products [J].
Brennan, Liam ;
Owende, Philip .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :557-577
[2]   Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum [J].
Cheng, Hai-Hsuan ;
Whang, Liang-Ming ;
Chan, Kun-Chi ;
Chung, Man-Chien ;
Wu, Shu-Hsien ;
Liu, Cheng-Pin ;
Tien, Shih-Yuan ;
Chen, Shan-Yuan ;
Chang, Jo-Shu ;
Lee, Wen-Jhy .
BIORESOURCE TECHNOLOGY, 2015, 184 :379-385
[3]  
Choix FJ, 2012, ENZYME MICROB TECH, V51, P294, DOI 10.1016/j.enzmictec.2012.07.013
[4]   Recent advances in liquid biofuel production from algal feedstocks [J].
Daroch, Maurycy ;
Geng, Shu ;
Wang, Guangyi .
APPLIED ENERGY, 2013, 102 :1371-1381
[5]   How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility? [J].
Ding, Shi-You ;
Liu, Yu-San ;
Zeng, Yining ;
Himmel, Michael E. ;
Baker, John O. ;
Bayer, Edward A. .
SCIENCE, 2012, 338 (6110) :1055-1060
[6]  
Duerre Peter, 2007, Biotechnology Journal, V2, P1525, DOI 10.1002/biot.200700168
[7]   Acetone, butanol, and ethanol production from wastewater algae [J].
Ellis, Joshua T. ;
Hengge, Neal N. ;
Sims, Ronald C. ;
Miller, Charles D. .
BIORESOURCE TECHNOLOGY, 2012, 111 :491-495
[8]   Butanol production from agricultural residues:: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation [J].
Ezeji, Thaddeus ;
Qureshi, Nasib ;
Blaschek, Hans P. .
BIOTECHNOLOGY AND BIOENGINEERING, 2007, 97 (06) :1460-1469
[9]   Algae as a source of renewable chemicals: opportunities and challenges [J].
Foley, Patrick M. ;
Beach, Evan S. ;
Zimmerman, Julie B. .
GREEN CHEMISTRY, 2011, 13 (06) :1399-1405
[10]   Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis) [J].
Gao, Kai ;
Boiano, Simone ;
Marzocchella, Antonio ;
Rehmann, Lars .
BIORESOURCE TECHNOLOGY, 2014, 174 :176-181