On the support of the simple branching random walk

被引:2
作者
Johnson, Torrey [1 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
关键词
Branching random walk; Multiplicative cascade; Central limit theorem;
D O I
10.1016/j.spl.2014.04.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Connectivity of the support of the simple branching random walk is established in certain asymmetric cases, extending a previous result of Grill. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 109
页数:3
相关论文
共 50 条
  • [41] ASYMPTOTIC PROPERTIES OF A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    Wang, Yuejiao
    Liu, Zaiming
    Liu, Quansheng
    Li, Yingqiu
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (05) : 1345 - 1362
  • [42] ASYMPTOTIC PROPERTIES OF A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    王月娇
    刘再明
    刘全升
    李应求
    Acta Mathematica Scientia, 2019, 39 (05) : 1345 - 1362
  • [43] RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY WITH A BRANCHING RANDOM WALK
    Matzinger, Heinrich
    Pachon, Angelica
    Popov, Serguei
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (02) : 651 - 685
  • [44] A Branching Random Walk Seen from the Tip
    Éric Brunet
    Bernard Derrida
    Journal of Statistical Physics, 2011, 143 : 420 - 446
  • [45] Genealogy of the extremal process of the branching random walk
    Mallein, Bastien
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 1065 - 1087
  • [46] A second order asymptotic expansion in the local limit theorem for a simple branching random walk in Zd
    Gao, Zhi-Qiang
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (12) : 4000 - 4017
  • [47] Asymptotic Properties of a Branching Random Walk with a Random Environment in Time
    Yuejiao Wang
    Zaiming Liu
    Quansheng Liu
    Yingqiu Li
    Acta Mathematica Scientia, 2019, 39 : 1345 - 1362
  • [48] BRANCHING RANDOM WALK IN Z4 WITH BRANCHING AT THE ORIGIN ONLY
    Hu, Y.
    Topchii, V. A.
    Vatutin, V. A.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2012, 56 (02) : 193 - 212
  • [49] Convergence of complex martingale for a branching random walk in a time random environment
    Wang, Xiaoqiang
    Huang, Chunmao
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [50] Limit Theorems for the Minimal Position of a Branching Random Walk in Random Environment
    Zhang, Xiaoyue
    Hou, Wanting
    Hong, Wenming
    MARKOV PROCESSES AND RELATED FIELDS, 2020, 26 (05) : 839 - 860