On the support of the simple branching random walk

被引:2
作者
Johnson, Torrey [1 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
关键词
Branching random walk; Multiplicative cascade; Central limit theorem;
D O I
10.1016/j.spl.2014.04.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Connectivity of the support of the simple branching random walk is established in certain asymmetric cases, extending a previous result of Grill. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 109
页数:3
相关论文
共 50 条
  • [31] CONVERGENCE IN LAW OF THE MINIMUM OF A BRANCHING RANDOM WALK
    Aidekon, Elie
    ANNALS OF PROBABILITY, 2013, 41 (3A) : 1362 - 1426
  • [32] Critical survival barrier for branching random walk
    Liu, Jingning
    Zhang, Mei
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (06) : 1259 - 1280
  • [33] CLUSTERING EFFECT FOR MULTITYPE BRANCHING RANDOM WALK
    Balashova, D. M.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (03) : 352 - 362
  • [34] A Branching Random Walk Seen from the Tip
    Brunet, Eric
    Derrida, Bernard
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (03) : 420 - 446
  • [35] A VARIATIONAL APPROACH TO BRANCHING RANDOM-WALK IN RANDOM ENVIRONMENT
    BAILLON, JB
    CLEMENT, PH
    GREVEN, A
    DENHOLLANDER, F
    ANNALS OF PROBABILITY, 1993, 21 (01) : 290 - 317
  • [36] The critical branching random walk in a random environment dies out
    Garet, Olivier
    Marchand, Regine
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 15
  • [37] Branching random walk in a random time-independent environment
    Chernousova, Elena
    Hryniv, Ostap
    Molchanov, Stanislav
    MATHEMATICAL POPULATION STUDIES, 2023, 30 (02) : 73 - 94
  • [38] The maximum of a branching random walk with semiexponential increments
    Gantert, N
    ANNALS OF PROBABILITY, 2000, 28 (03) : 1219 - 1229
  • [39] How big is the minimum of a branching random walk?
    Hu, Yueyun
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01): : 233 - 260
  • [40] On the maximal displacement of critical branching random walk
    Lalley, Steven P.
    Shao, Yuan
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 162 (1-2) : 71 - 96