Nanodrugs based on peptide-modulated self-assembly: Design, delivery and tumor therapy

被引:59
作者
Li, Shukun [1 ,3 ]
Xing, Ruirui [1 ]
Chang, Rui [1 ,3 ]
Zou, Qianli [1 ,2 ]
Yan, Xuehai [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, 1 North Second St, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, Ctr Mesosci, 1 North Second St, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Peptides; Intermolecular interactions; Self-assembly; Nanodrugs; Tumor therapy; SUPRAMOLECULAR NANOSTRUCTURES; AMPHIPHILIC PEPTIDE; DRUG AMPHIPHILE; SERUM-ALBUMIN; AMINO-ACIDS; PROTEIN; VACCINE; NANOPARTICLES; NANOCARRIERS; NANOFIBERS;
D O I
10.1016/j.cocis.2017.12.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this review we consider assembled nanodrugs as a type of nanoscale drugs formed by molecular self-assembly and associated with precise organization of multiple non-covalent interactions. Their typical feature is that the drug itself is considered as one of the building blocks with flexibly interplaying interaction for supramolecular assembly and nanostructure formation with robust stability and high loading efficiency in a controlled and tunable way. The super stability with retained function results from the "hydrophobic effect" of supramolecular self assembly of peptides and drugs. It is the hydrophobic effect responsible for both colloidal stability and circulation stability in body against dilution and blood-flow shearing. The assembled nanodrugs are distinguished from conventional ones with encapsulation of the drugs in delivery nanocarriers. We will focus on how peptides and peptide-conjugates can be designed for controlling and mediating the formation of the assembled nanodrugs. Emphasis will be put on the rational design of intermolecular interactions between drugs and peptides, in vitro and in vivo drug delivery and antitumor therapeutic effects. Finally, we will discuss the key challenges and promising perspectives of such kind of peptide-mediated assembled nanodrugs for both technical advances and potential clinical translation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 122 条
[1]   Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy [J].
Abbas, Manzar ;
Zou, Qianli ;
Li, Shukun ;
Yan, Xuehai .
ADVANCED MATERIALS, 2017, 29 (12)
[2]   Functional Supramolecular Polymers [J].
Aida, T. ;
Meijer, E. W. ;
Stupp, S. I. .
SCIENCE, 2012, 335 (6070) :813-817
[3]   Liposomal drug delivery systems: From concept to clinical applications [J].
Allen, Theresa M. ;
Cullis, Pieter R. .
ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (01) :36-48
[4]   Systemically Injectable Enzyme-Loaded Polyion Complex Vesicles as In Vivo Nanoreactors Functioning in Tumors [J].
Anraku, Yasutaka ;
Kishimura, Akihiro ;
Kamiya, Mako ;
Tanaka, Sayaka ;
Nomoto, Takahiro ;
Toh, Kazuko ;
Matsumoto, Yu ;
Fukushima, Shigeto ;
Sueyoshi, Daiki ;
Kano, Mitsunobu R. ;
Urano, Yasuteru ;
Nishiyama, Nobuhiro ;
Kataoka, Kazunori .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (02) :560-565
[5]   Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action [J].
Ariga, Katsuhiko ;
Li, Junbai ;
Fei, Jinbo ;
Ji, Qingmin ;
Hill, Jonathan P. .
ADVANCED MATERIALS, 2016, 28 (06) :1251-1286
[6]   Self-adjuvanting vaccine against group A streptococcus: Application of fibrillized peptide and immunostimulatory lipid as adjuvant [J].
Azmi, Fazren ;
Fuaad, Abdullah Al Hadi Ahmad ;
Giddam, Ashwini Kumar ;
Batzloff, Michael R. ;
Good, Michael F. ;
Skwarczynski, Mariusz ;
Toth, Istvan .
BIOORGANIC & MEDICINAL CHEMISTRY, 2014, 22 (22) :6401-6408
[7]   Multiblock Polymers: Panacea or Pandora's Box? [J].
Bates, Frank S. ;
Hillmyer, Marc A. ;
Lodge, Timothy P. ;
Bates, Christopher M. ;
Delaney, Kris T. ;
Fredrickson, Glenn H. .
SCIENCE, 2012, 336 (6080) :434-440
[8]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[9]   Coassembly of amphiphiles with opposite peptide polarities into nanofibers [J].
Behanna, HA ;
Donners, JJJM ;
Gordon, AC ;
Stupp, SI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (04) :1193-1200
[10]  
Black M, 2010, EXPERT REV VACCINES, V9, P157, DOI [10.1586/erv.09.160, 10.1586/ERV.09.160]