Dynamic parameter estimation and optimization for batch distillation

被引:24
作者
Safdarnejad, Seyed Mostafa [1 ]
Gallacher, Jonathan R. [1 ]
Hedengren, John D. [1 ]
机构
[1] Brigham Young Univ, Dept Chem Engn, 350 CB, Provo, UT 84602 USA
关键词
Dynamic parameter estimation; Nonlinear statistics; Experimental validation; Batch distillation; Dynamic optimization; PREDICTIVE CONTROL; CONTROL VARIABLES; OPTIMAL-DESIGN; RATE POLICY; OPERATION; SYSTEMS; COLUMN; SENSITIVITY; SIMULATION; CAMPAIGN;
D O I
10.1016/j.compchemeng.2015.12.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work reviews a well-known methodology for batch distillation modeling, estimation, and optimization but adds a new case study with experimental validation. Use of nonlinear statistics and a sensitivity analysis provides valuable insight for model validation and optimization verification for batch columns. The application is a simple, batch column with a binary methanol-ethanol mixture. Dynamic parameter estimation with an l(1)-norm error, nonlinear confidence intervals, ranking of observable parameters, and efficient sensitivity analysis are used to refine the model and find the best parameter estimates for dynamic optimization implementation. The statistical and sensitivity analyses indicated there are only a subset of parameters that are observable. For the batch column, the optimized production rate increases by 14% while maintaining product purity requirements. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:18 / 32
页数:15
相关论文
共 70 条
[31]  
Kim YH, 1999, CHEM ENG PROCESS, V38, P61
[32]   An evolutionary approach for multi-objective dynamic optimization applied to middle vessel batch distillation [J].
Leipold, Matthias ;
Gruetzmann, Sven ;
Fieg, Georg .
COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (04) :857-870
[33]   Parameter Estimation in Batch Bioreactor Simulation Using Metabolic Models: Sequential Solution with Direct Sensitivities [J].
Leppavuori, Juha T. ;
Domach, Michael M. ;
Biegler, Lorenz T. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (21) :12080-12091
[34]   Hybrid Dynamic Optimization Methods for Systems Biology with Efficient Sensitivities [J].
Lewis, Nicholas R. ;
Hedengren, John D. ;
Haseltine, Eric L. .
PROCESSES, 2015, 3 (03) :701-729
[35]   Optimization of a semibatch distillation process with model validation on the industrial site [J].
Li, P ;
Garcia, HA ;
Wozny, G ;
Reuter, E .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (04) :1341-1350
[36]  
Li P, 1998, CHEM ENG TECHNOL, V21, P853, DOI 10.1002/(SICI)1521-4125(199811)21:11<853::AID-CEAT853>3.0.CO
[37]  
2-2
[38]   Performance analysis of on-line batch optimization systems [J].
Loeblein, C ;
Perkins, JD ;
Srinivasan, B ;
Bonvin, D .
COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 :S867-S872
[39]   Batch distillation: Better at constant or variable reflux? [J].
Lopes, Maira Mendes ;
Song, Tah Wun .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2010, 49 (12) :1298-1304
[40]   Simultaneous optimal configuration, design and operation of batch distillation [J].
Low, KH ;
Sorensen, E .
AICHE JOURNAL, 2005, 51 (06) :1700-1713