Molecular dynamics on quantum annealers

被引:6
作者
Gaidai, Igor [1 ]
Babikov, Dmitri [1 ]
Teplukhin, Alexander [2 ,3 ]
Kendrick, Brian K. [4 ]
Mniszewski, Susan M. [5 ]
Zhang, Yu [4 ]
Tretiak, Sergei [4 ]
Dub, Pavel A. [6 ]
机构
[1] Marquette Univ, Dept Chem, Wehr Chem Bldg, Marquette, WI 53201 USA
[2] SUNY Stony Brook, Inst Adv Computat Sci, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[4] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Chem Div, Los Alamos, NM 87545 USA
关键词
D O I
10.1038/s41598-022-21163-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work we demonstrate a practical prospect of using quantum annealers for simulation of molecular dynamics. A methodology developed for this goal, dubbed Quantum Differential Equations (QDE), is applied to propagate classical trajectories for the vibration of the hydrogen molecule in several regimes: nearly harmonic, highly anharmonic, and dissociative motion. The results obtained using the D-Wave 2000Q quantum annealer are all consistent and quickly converge to the analytical reference solution. Several alternative strategies for such calculations are explored and it was found that the most accurate results and the best efficiency are obtained by combining the quantum annealer with classical post-processing (greedy algorithm). Importantly, the QDE framework developed here is entirely general and can be applied to solve any system of first-order ordinary nonlinear differential equations using a quantum annealer.
引用
收藏
页数:10
相关论文
共 32 条
[1]  
[Anonymous], 2022, DWAVE USER MANUAL
[2]  
[Anonymous], 2021, DWAVE OCEAN SDK
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[5]   Quantum computing for atomic and molecular resonances [J].
Bian, Teng ;
Kais, Sabre .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (19)
[6]  
Billing G. D., 2003, QUANTUM CLASSICAL TH, DOI DOI 10.1093/OSO/9780195146196.001.0001
[7]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[8]   Materials challenges and opportunities for quantum computing hardware [J].
de Leon, Nathalie P. ;
Itoh, Kohei M. ;
Kim, Dohun ;
Mehta, Karan K. ;
Northup, Tracy E. ;
Paik, Hanhee ;
Palmer, B. S. ;
Samarth, N. ;
Sangtawesin, Sorawis ;
Steuerman, D. W. .
SCIENCE, 2021, 372 (6539) :253-+
[9]   Ab initio molecular dynamics on quantum computers [J].
Fedorov, Dmitry A. ;
Otten, Matthew J. ;
Gray, Stephen K. ;
Alexeev, Yuri .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (16)
[10]  
Genin S. N., 2019, QUANTUM CHEM QUANTUM, P1