Strategy to enhance the electrochemical performance of silicon oxycarbide as anodes in sodium-ion batteries

被引:10
作者
Chandra, Christian [1 ]
Devina, Winda [2 ]
Sarofil, Anith Dzhanxinah Mohd [2 ]
Kim, Jaehoon [1 ,2 ,3 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[3] Sungkyunkwan Univ, Sch Chem Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Silicon oxycarbide; Sodium-ion batteries; Ether-based electrolyte; Diglyme; Sodium trifluoromethane sulfonate; ETHER-BASED ELECTROLYTE; LONG CYCLE LIFE; HARD CARBON; RATE CAPABILITY; MICROSIZED SN; STORAGE; GRAPHITE; INTERCALATION; MECHANISM; OIL;
D O I
10.1016/j.cej.2022.135411
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Na+-ion storage capacity of silicon oxycarbides (SiOCs) can be enhanced by incorporating an ether-based electrolyte. Nonporous SiOC micron-sized particles in a sodium trifluoromethane sulfonate-diglyme electrolyte exhibit a more enhanced storage capacity (287 mAh g(-1)) in addition to a small capacity decay (0.002%) after 10,000 cycles. On applying a constant current constant voltage (CCCV) mode, the capacity increased to 322 mAh g(-1) diglyme-based ether electrolyte produced an ultrathin and inorganic-based solid electrolyte layer on the electrode surface. This reduces cell overpotential and volume expansion of the electrode. This study provides a rational strategy to design high-performance NIB cells.
引用
收藏
页数:12
相关论文
共 57 条
[1]  
Abdi H, 2017, DISTRIBUTED GENERATION SYSTEMS: DESIGN, OPERATION AND GRID INTEGRATION, P333, DOI 10.1016/B978-0-12-804208-3.00007-8
[2]   Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].
Alcántara, R ;
Lavela, P ;
Ortiz, GF ;
Tirado, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) :A222-A225
[3]   Elucidation of the Sodium-Storage Mechanism in Hard Carbons [J].
Bai, Panxing ;
He, Yongwu ;
Zou, Xiaoxi ;
Zhao, Xinxin ;
Xiong, Peixun ;
Xu, Yunhua .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[4]   Long cycle life and high rate sodium-ion chemistry for hard carbon anodes [J].
Bai, Panxing ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Xinxin ;
Xu, Kang ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2018, 13 :274-282
[5]   Enabling room temperature sodium metal batteries [J].
Cao, Ruiguo ;
Mishra, Kuber ;
Li, Xiaolin ;
Qian, Jiangfeng ;
Engelhard, Mark H. ;
Bowden, Mark E. ;
Han, Kee Sung ;
Mueller, Karl T. ;
Henderson, Wesley A. ;
Zhang, Ji-Guang .
NANO ENERGY, 2016, 30 :825-830
[6]  
Cesiulis H, 2016, NANOSCI TECHNOL, P3, DOI 10.1007/978-3-319-30198-3_1
[7]   New strategy for increasing sodium-ion uptake in silicon oxycarbides [J].
Chandra, Christian ;
Devina, Winda ;
Alvin, Stevanus ;
Kim, Jaehoon .
CHEMICAL ENGINEERING JOURNAL, 2021, 404
[8]   Revealing the Sodium Storage Mechanism in High-Temperature-Synthesized Silicon Oxycarbides [J].
Chandra, Christian ;
Cahyadi, Handi Setiadi ;
Alvin, Stevanus ;
Devina, Winda ;
Park, Jae-Ho ;
Chang, Wonyoung ;
Chung, Kyung Yoon ;
Kwak, Sang Kyu ;
Kim, Jaehoon .
CHEMISTRY OF MATERIALS, 2020, 32 (01) :410-423
[9]   Silicon oxycarbide produced from silicone oil for high-performance anode material in sodium ion batteries [J].
Chandra, Christian ;
Kim, Jaehoon .
CHEMICAL ENGINEERING JOURNAL, 2018, 338 :126-136
[10]   Preparation and structure of silicon oxycarbide glasses derived from polysiloxane precursors [J].
Corriu, RJP ;
Leclercq, D ;
Mutin, PH ;
Vioux, A .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 1997, 8 (1-3) :327-330