Nonlinear system identification using least squares support vector machine tuned by an adaptive particle swarm optimization

被引:15
作者
Wang, Shuen [1 ,2 ]
Han, Zhenzhen [1 ,2 ]
Liu, Fucai [1 ,2 ]
Tang, Yinggan [1 ,2 ]
机构
[1] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Natl Engn Res Ctr Equipment & Technol Cold Strip, Qinhuangdao 066004, Hebei, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Nonlinear system; Identification; Least squares support vector machine; Adaptive particle swarm optimization; REGRESSION; KERNEL; MODEL;
D O I
10.1007/s13042-015-0403-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a method for nonlinear system identification. The proposed method adopts least squares support vector machine (LSSVM) to approximate a nonlinear autoregressive model with eXogeneous (NARX). First, the orders of NARX model are determined from input-output data via Lipschitz quotient criterion. Then, an LSSVM model is used to approximate the NARX model. To obtain an efficient LSSVM model, a novel particle swarm optimization with adaptive inertia weight is proposed to tune the hyper-parameters of LSSVM. Two experimental results are given to illustrate the effectiveness of the proposed method.
引用
收藏
页码:981 / 992
页数:12
相关论文
共 39 条
[1]   Nonlinear system identification using Wiener type Laguerre-Wavelet network model [J].
Aadaleesan, P. ;
Miglan, Nitin ;
Sharma, Rajesh ;
Saha, Prabirkumar .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (15) :3932-3941
[2]   Identification of nonlinear systems by Takagi-Sugeno fuzzy logic grey box modeling for real-time control [J].
Abdelazim, T ;
Malik, OP .
CONTROL ENGINEERING PRACTICE, 2005, 13 (12) :1489-1498
[3]  
Adachi S., 2001, IFAC WORKSH AD LEARN
[4]  
Akaike H, 2009, IEEE FUZZY SET SYST, V160, P3518
[5]  
Alci M, 1974, IEEE T AUTOMAT CONTR, V19, P716
[6]  
[Anonymous], 2001, SWARM INTELL-US
[7]   A multi-objective artificial immune algorithm for parameter optimization in support vector machine [J].
Aydin, Ilhan ;
Karakose, Mehmet ;
Akin, Erhan .
APPLIED SOFT COMPUTING, 2011, 11 (01) :120-129
[8]   Fuzzy rule base design using tabu search algorithm for nonlinear system modeling [J].
Bagis, Aytekin .
ISA TRANSACTIONS, 2008, 47 (01) :32-44
[9]   FADING MEMORY AND THE PROBLEM OF APPROXIMATING NONLINEAR OPERATORS WITH VOLTERRA SERIES [J].
BOYD, S ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (11) :1150-1161
[10]   On-line identification of computationally undemanding evolving fuzzy models [J].
de Barros, Jean-Camille ;
Dexter, Arthur L. .
FUZZY SETS AND SYSTEMS, 2007, 158 (18) :1997-2012