Identifying communities from multiplex biological networks

被引:45
作者
Didier, Gilles [1 ]
Brun, Christine [2 ,3 ]
Baudot, Anais [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, Marseille, France
[2] Aix Marseille Univ, INSERM, TAGC, UMR S1090, Marseille, France
[3] CNRS, Marseille, France
关键词
Communities; Clustering; Functional modules; Modularity; Biological networks; Multiplex networks; Multi-layer networks; Coffin-Siris syndrome; ALGORITHMS; MUTATIONS; PHENOTYPE; GENES;
D O I
10.7717/peerj.1525
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Various biological networks can be constructed, each featuring gene/protein relationships of different meanings (e.g., protein interactions or gene co-expression). However, this diversity is classically not considered and the different interaction categories are usually aggregated in a single network. The multiplex framework, where biological relationships are represented by different network layers reflecting the various nature of interactions, is expected to retain more information. Here we assessed aggregation, consensus and multiplex-modularity approaches to detect communities from multiple network sources. By simulating random networks, we demonstrated that the multiplex-modularity method outperforms the aggregation and consensus approaches when network layers are incomplete or heterogeneous in density. Application to a multiplex biological network containing 4 layers of physical or functional interactions allowed recovering communities more accurately annotated than their aggregated counterparts. Overall, taking into account the multiplexity of biological networks leads to better-defined functional modules. A user-friendly graphical software to detect communities from multiplex networks, and corresponding C source codes, are available at GitHub (https://github.com/gilles-didier/MolTi).
引用
收藏
页数:20
相关论文
共 54 条
[41]  
Saito R, 2012, NAT METHODS, V9, P1069, DOI [10.1038/NMETH.2212, 10.1038/nmeth.2212]
[42]  
Santos JM, 2009, LECT NOTES COMPUT SC, V5769, P175, DOI 10.1007/978-3-642-04277-5_18
[43]   PID: the Pathway Interaction Database [J].
Schaefer, Carl F. ;
Anthony, Kira ;
Krupa, Shiva ;
Buchoff, Jeffrey ;
Day, Matthew ;
Hannay, Timo ;
Buetow, Kenneth H. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D674-D679
[44]   Critical limitations of consensus clustering in class discovery [J].
Senbabaoglu, Yasin ;
Michailidis, George ;
Li, Jun Z. .
SCIENTIFIC REPORTS, 2014, 4
[45]   Modeling cellular machinery through biological network comparison [J].
Sharan, R ;
Ideker, T .
NATURE BIOTECHNOLOGY, 2006, 24 (04) :427-433
[46]   A Variational Bayesian Framework for Clustering with Multiple Graphs [J].
Shiga, Motoki ;
Mamitsuka, Hiroshi .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (04) :577-589
[47]   Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome [J].
Tsurusaki, Yoshinori ;
Okamoto, Nobuhiko ;
Ohashi, Hirofumi ;
Kosho, Tomoki ;
Imai, Yoko ;
Hibi-Ko, Yumiko ;
Kaname, Tadashi ;
Naritomi, Kenji ;
Kawame, Hiroshi ;
Wakui, Keiko ;
Fukushima, Yoshimitsu ;
Homma, Tomomi ;
Kato, Mitsuhiro ;
Hiraki, Yoko ;
Yamagata, Takanori ;
Yano, Shoji ;
Mizuno, Seiji ;
Sakazume, Satoru ;
Ishii, Takuma ;
Nagai, Toshiro ;
Shiina, Masaaki ;
Ogata, Kazuhiro ;
Ohta, Tohru ;
Niikawa, Norio ;
Miyatake, Satoko ;
Okada, Ippei ;
Mizuguchi, Takeshi ;
Doi, Hiroshi ;
Saitsu, Hirotomo ;
Miyake, Noriko ;
Matsumoto, Naomichi .
NATURE GENETICS, 2012, 44 (04) :376-378
[48]  
Venkatesan K, 2009, NAT METHODS, V6, P83, DOI [10.1038/nmeth.1280, 10.1038/NMETH.1280]
[49]   Emerging roles of MCPH1: Expedition from primary microcephaly to cancer [J].
Venkatesh, Thejaswini ;
Suresh, Padmanaban S. .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2014, 93 (03) :98-105
[50]   Clinical Features, Diagnostic Criteria, and Management of Coffin-Siris Syndrome [J].
Vergano, Samantha S. ;
Deardorff, Matthew A. .
AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS, 2014, 166 (03) :252-256