Lorentzian affine hyperspheres with constant affine sectional curvature

被引:16
|
作者
Kriele, M
Vrancken, L
机构
[1] Tech Univ Berlin, Fachbereich Math MA 8 3, D-10623 Berlin, Germany
[2] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
关键词
D O I
10.1090/S0002-9947-99-02379-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study affine hyperspheres M with constant sectional curvature (with respect to the affine metric h). A conjecture by M. Magid and P. Ryan states that every such affine hypersphere with nonzero Pick invariant is affinely equivalent to either (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/- x(2m)(2)) = 1 or (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/-x(2m)(2))x(2m+1) = 1 where the dimension n satisfies n = 2m - 1 or n = 2m. Up to now, this conjecture was proved if M is positive definite or if M is a 3-dimensional Lorentz space. In this paper, we give an affirmative answer to this conjecture for arbitrary dimensional Lorentzian affine hyperspheres.
引用
收藏
页码:1581 / 1599
页数:19
相关论文
共 50 条
  • [31] HYPERSPHERES IN SPACES OF CONSTANT CURVATURE
    FULTON, CM
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (01): : 43 - &
  • [32] AFFINE SURFACES WITH CONSTANT AFFINE CURVATURES
    VRANCKEN, L
    GEOMETRIAE DEDICATA, 1990, 33 (02) : 177 - 194
  • [33] Characterizations of the Calabi product of hyperbolic affine hyperspheres
    Hu, Zejun
    Li, Haizhong
    Vrancken, Luc
    RESULTS IN MATHEMATICS, 2008, 52 (3-4) : 299 - 314
  • [35] Affine rotational surfaces with vanishing affine curvature
    Manhart F.
    Journal of Geometry, 2004, 80 (1-2) : 166 - 178
  • [36] On product affine hyperspheres in ℝn+1
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    Science China Mathematics, 2020, 63 : 2055 - 2078
  • [37] On product affine hyperspheres in Rn+1
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    ScienceChina(Mathematics), 2020, 63 (10) : 2055 - 2078
  • [38] Characterizations of the Calabi Product of Hyperbolic Affine Hyperspheres
    Zejun Hu
    Haizhong Li
    Luc Vrancken
    Results in Mathematics, 2008, 52 : 299 - 314
  • [39] On four-dimensional Einstein affine hyperspheres
    Hu, Zejun
    Li, Haizhong
    Vrancken, Luc
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 50 : 20 - 33
  • [40] Characterization of the Generalized Calabi Composition of Affine Hyperspheres
    Miroslava ANTI
    Ze Jun HU
    Ce Ce LI
    Luc VRANCKEN
    ActaMathematicaSinica, 2015, 31 (10) : 1531 - 1554