Lorentzian affine hyperspheres with constant affine sectional curvature

被引:16
|
作者
Kriele, M
Vrancken, L
机构
[1] Tech Univ Berlin, Fachbereich Math MA 8 3, D-10623 Berlin, Germany
[2] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
关键词
D O I
10.1090/S0002-9947-99-02379-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study affine hyperspheres M with constant sectional curvature (with respect to the affine metric h). A conjecture by M. Magid and P. Ryan states that every such affine hypersphere with nonzero Pick invariant is affinely equivalent to either (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/- x(2m)(2)) = 1 or (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/-x(2m)(2))x(2m+1) = 1 where the dimension n satisfies n = 2m - 1 or n = 2m. Up to now, this conjecture was proved if M is positive definite or if M is a 3-dimensional Lorentz space. In this paper, we give an affirmative answer to this conjecture for arbitrary dimensional Lorentzian affine hyperspheres.
引用
收藏
页码:1581 / 1599
页数:19
相关论文
共 50 条