Lorentzian affine hyperspheres with constant affine sectional curvature

被引:16
作者
Kriele, M
Vrancken, L
机构
[1] Tech Univ Berlin, Fachbereich Math MA 8 3, D-10623 Berlin, Germany
[2] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
关键词
D O I
10.1090/S0002-9947-99-02379-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study affine hyperspheres M with constant sectional curvature (with respect to the affine metric h). A conjecture by M. Magid and P. Ryan states that every such affine hypersphere with nonzero Pick invariant is affinely equivalent to either (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/- x(2m)(2)) = 1 or (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/-x(2m)(2))x(2m+1) = 1 where the dimension n satisfies n = 2m - 1 or n = 2m. Up to now, this conjecture was proved if M is positive definite or if M is a 3-dimensional Lorentz space. In this paper, we give an affirmative answer to this conjecture for arbitrary dimensional Lorentzian affine hyperspheres.
引用
收藏
页码:1581 / 1599
页数:19
相关论文
共 11 条
[1]  
DILLEN F, AFFINE HYPERSPHERES
[2]  
Li A.M., 1993, GLOBAL AFFINE DIFFER
[3]  
Li A.-M., 1988, RESULTS MATH, V13, P308
[4]   AFFINE 3-SPHERES WITH CONSTANT AFFINE CURVATURE [J].
MAGID, MA ;
RYAN, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (02) :887-901
[5]  
MAGID MA, 1990, GEOMETRIAE DEDICATA, V33, P277
[6]   GEODESICS IN AFFINE DIFFERENTIAL GEOMETRY [J].
NOMIZU, K ;
VRANCKEN, L .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1995, 6 (05) :749-766
[7]  
Nomizu K., 1994, Affine Differential Geometry: Geometry of Affine Immersions
[8]  
Radon J., 1918, LEIPZIGER BERICHTE, V70, P147
[9]  
SIMON U, 1991, DIFFER GEOM APPL, V1, P123
[10]   AFFINE SPHERES WITH CONSTANT AFFINE SECTIONAL CURVATURE [J].
VRANCKEN, L ;
LI, AM ;
SIMON, U .
MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (04) :651-658