Lorentzian affine hyperspheres with constant affine sectional curvature

被引:16
|
作者
Kriele, M
Vrancken, L
机构
[1] Tech Univ Berlin, Fachbereich Math MA 8 3, D-10623 Berlin, Germany
[2] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
关键词
D O I
10.1090/S0002-9947-99-02379-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study affine hyperspheres M with constant sectional curvature (with respect to the affine metric h). A conjecture by M. Magid and P. Ryan states that every such affine hypersphere with nonzero Pick invariant is affinely equivalent to either (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/- x(2m)(2)) = 1 or (x(1)(2) +/- x(2)(2))(x(3)(2) +/- x(4)(2))...(x(2m-1)(2) +/-x(2m)(2))x(2m+1) = 1 where the dimension n satisfies n = 2m - 1 or n = 2m. Up to now, this conjecture was proved if M is positive definite or if M is a 3-dimensional Lorentz space. In this paper, we give an affirmative answer to this conjecture for arbitrary dimensional Lorentzian affine hyperspheres.
引用
收藏
页码:1581 / 1599
页数:19
相关论文
共 50 条
  • [1] Affine hyperspheres with constant affine sectional curvature
    Dillen, F
    Magid, M
    Vrancken, L
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 31 - 53
  • [2] Three-dimensional locally homogeneous Lorentzian affine hyperspheres with constant sectional curvature
    Ooguri M.
    Journal of Geometry, 2013, 104 (1) : 137 - 152
  • [3] LOCALLY HOMOGENEOUS AFFINE HYPERSPHERES WITH CONSTANT SECTIONAL CURVATURE
    Li, Cece
    KODAI MATHEMATICAL JOURNAL, 2016, 39 (01) : 35 - 58
  • [4] On Lorentzian Einstein affine hyperspheres
    Hu, Zejun
    Li, Cece
    Xing, Cheng
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 179
  • [5] AFFINE SPHERES WITH CONSTANT AFFINE SECTIONAL CURVATURE
    VRANCKEN, L
    LI, AM
    SIMON, U
    MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (04) : 651 - 658
  • [6] AFFINE HYPERSURFACES WITH CONSTANT SECTIONAL CURVATURE
    Antic, Miroslava
    Li, Haizhong
    Vrancken, Luc
    Wang, Xianfeng
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 310 (02) : 275 - 302
  • [7] Affine translation surfaces with constant sectional curvature
    Magid M.
    Vrancken L.
    Journal of Geometry, 2000, 68 (1-2) : 192 - 199
  • [8] AFFINE 3-SPHERES WITH CONSTANT AFFINE CURVATURE
    MAGID, MA
    RYAN, PJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (02) : 887 - 901
  • [9] HYPERBOLIC AFFINE HYPERSPHERES
    SASAKI, T
    NAGOYA MATHEMATICAL JOURNAL, 1980, 77 (FEB) : 107 - 123
  • [10] Euclidean Complete Affine Surfaces with Constant Affine Mean Curvature
    An-Min Li
    Fang Jia
    Annals of Global Analysis and Geometry, 2003, 23 : 283 - 304