Isolated Diatomic Ni-Fe Metal-Nitrogen Sites for Synergistic Electroreduction of CO2

被引:892
作者
Ren, Wenhao [1 ]
Tan, Xin [2 ]
Yang, Wanfeng [1 ]
Jia, Chen [1 ]
Xu, Shumao [3 ]
Wang, Kaixue [3 ]
Smith, Sean C. [2 ]
Zhao, Chuan [1 ]
机构
[1] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
[2] Australian Natl Univ, Res Sch Phys & Engn, State Dept Appl Math, Canberra, ACT 2601, Australia
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
基金
澳大利亚研究理事会;
关键词
CO2; reduction; electrocatalysts; metal centers; single-atom catalysts; ORGANIC FRAMEWORKS; EFFICIENT ELECTROREDUCTION; ELECTROCHEMICAL REDUCTION; DESIGN;
D O I
10.1002/anie.201901575
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polynary single-atom structures can combine the advantages of homogeneous and heterogeneous catalysts while providing synergistic functions based on different molecules and their interfaces. However, the fabrication and identification of such an active-site prototype remain elusive. Here we report isolated diatomic Ni-Fe sites anchored on nitrogenated carbon as an efficient electrocatalyst for CO2 reduction. The catalyst exhibits high selectivity with CO Faradaic efficiency above 90% over a wide potential range from -0.5 to -0.9V (98% at -0.7V), and robust durability, retaining 99% of its initial selectivity after 30hours of electrolysis. Density functional theory studies reveal that the neighboring Ni-Fe centers not only function in synergy to decrease the reaction barrier for the formation of COOH* and desorption of CO, but also undergo distinct structural evolution into a CO-adsorbed moiety upon CO2 uptake.
引用
收藏
页码:6972 / 6976
页数:5
相关论文
共 36 条
[1]  
[Anonymous], 2018, ANGEW CHEM
[2]   Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures [J].
Artyushkova, K. ;
Kiefer, B. ;
Halevi, B. ;
Knop-Gericke, A. ;
Schlogl, R. ;
Atanassov, P. .
CHEMICAL COMMUNICATIONS, 2013, 49 (25) :2539-2541
[3]  
Cao L., 2018, NAT CATAL
[4]   Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications [J].
Chen, Yuanjun ;
Ji, Shufang ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
JOULE, 2018, 2 (07) :1242-1264
[5]   Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction [J].
Cheng, Yi ;
Zhao, Shiyong ;
Johannessen, Bernt ;
Veder, Jean-Pierre ;
Saunders, Martin ;
Rowles, Matthew R. ;
Cheng, Min ;
Liu, Chang ;
Chisholm, Matthew F. ;
De Marco, Roland ;
Cheng, Hui-Ming ;
Yang, Shi-Ze ;
Jiang, San Ping .
ADVANCED MATERIALS, 2018, 30 (13)
[6]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[7]   The role of reticular chemistry in the design of CO2 reduction catalysts [J].
Diercks, Christian S. ;
Liu, Yuzhong ;
Cordova, Kyle E. ;
Yaghi, Omar M. .
NATURE MATERIALS, 2018, 17 (04) :301-307
[8]   Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J].
Gao, Shan ;
Lin, Yue ;
Jiao, Xingchen ;
Sun, Yongfu ;
Luo, Qiquan ;
Zhang, Wenhua ;
Li, Dianqi ;
Yang, Jinlong ;
Xie, Yi .
NATURE, 2016, 529 (7584) :68-+
[9]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[10]  
Huang X., 2006, ANGEW CHEM, V118, P1587, DOI [DOI 10.1360/03WB0079, 10.1002/ange.200503778, DOI 10.1002/ANGE.200503778]