SOME RECENT PROGRESS ON STOCHASTIC HEAT EQUATIONS

被引:17
作者
Hu, Yaozhong [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gaussian random field; Gaussian noise; stochastic partial differential equation (stochastic heat equation); Feynman-Kac formula for the solution; Feynman-Kac formula for the moments of the solution; chaos expansion; hypercontractivity; moment bounds; Holder continuity; joint Holder continuity; asymptotic behaviour; Trotter-Lie formula; Skorohod integral; FEYNMAN-KAC FORMULA; ANDERSON MODEL; PARABOLIC PROBLEMS; HOLDER-CONTINUITY; FRACTIONAL NOISE; ROUGH DEPENDENCE; BROWNIAN-MOTION; ASYMPTOTICS; DRIVEN; EXPANSION;
D O I
10.1007/s10473-019-0315-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covariance structures. The focus is on the existence and uniqueness of the classical (square integrable) solution (mild solution, weak solution). It is also concerned with the Feynman-Kac formula for the solution; Feynman-Kac formula for the moments of the solution; and their applications to the asymptotic moment bounds of the solution. It also briefly touches the exact asymptotics of the moments of the solution.
引用
收藏
页码:874 / 914
页数:41
相关论文
共 69 条
[21]   Two-point Correlation Function and Feynman-Kac Formula for the Stochastic Heat Equation [J].
Chen, Le ;
Hu, Yaozhong ;
Nualart, David .
POTENTIAL ANALYSIS, 2017, 46 (04) :779-797
[22]   Space-time fractional diffusions in Gaussian noisy environment [J].
Chen, Le ;
Hu, Guannan ;
Hu, Yaozhong ;
Huang, Jingyu .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (01) :171-206
[23]   MOMENTS AND GROWTH INDICES FOR THE NONLINEAR STOCHASTIC HEAT EQUATION WITH ROUGH INITIAL CONDITIONS [J].
Chen, Le ;
Dalang, Robert C. .
ANNALS OF PROBABILITY, 2015, 43 (06) :3006-3051
[24]  
Chen X, PREPRINT
[25]   Moment asymptotics for parabolic Anderson equation with fractional time-space noise: In Skorokhod regime [J].
Chen, Xia .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (02) :819-841
[26]   SPATIAL ASYMPTOTICS FOR THE PARABOLIC ANDERSON MODELS WITH GENERALIZED TIME-SPACE GAUSSIAN NOISE [J].
Chen, Xia .
ANNALS OF PROBABILITY, 2016, 44 (02) :1535-1598
[27]   Exponential asymptotics for time-space Hamiltonians [J].
Chen, Xia ;
Hu, Yaozhong ;
Song, Jian ;
Xing, Fei .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (04) :1529-1561
[28]   QUENCHED ASYMPTOTICS FOR BROWNIAN MOTION IN GENERALIZED GAUSSIAN POTENTIAL [J].
Chen, Xia .
ANNALS OF PROBABILITY, 2014, 42 (02) :576-622
[29]  
Chernoff P R, 1974, MEMOIRS AM MATH SOC
[30]  
Chernoff PR., 1968, J. Funct. Anal, V2, P238, DOI [10.1016/0022-1236(68)90020-7, DOI 10.1016/0022-1236(68)90020-7]