Impact of bonding at multi-layer graphene/metal Interfaces on thermal boundary conductance

被引:55
作者
Chen, Liang [1 ]
Huang, Zhen [2 ]
Kumar, Satish [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Dell Inc, Austin, TX USA
来源
RSC ADVANCES | 2014年 / 4卷 / 68期
基金
美国国家科学基金会;
关键词
FEW-LAYER GRAPHENE; ELECTRON LOCALIZATION FUNCTIONS; GREENS-FUNCTION METHOD; PHONON TRANSPORT; LARGE-AREA; TRANSISTORS; METALS; SIMULATION; MONOLAYER; DYNAMICS;
D O I
10.1039/c4ra03585b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use density functional theory and the atomistic Green's function method (AGF) to study the effect of bonding on phonon transmission and thermal boundary conductance (TBC) at the interface of metals (Au, Cu, and Ti) and single layer graphene (SLG)/multi-layer graphene (MLG). Our analysis shows that the TBC across Ti/SLG/Ti interfaces (similar to 500 MW m(-2) K-1) is significantly larger than the TBC across Cu/SLG/Cu (similar to 10 MW m(-2) K-1) and Au/SLG/Au (similar to 7 MW m(-2) K-1) interfaces. However, the TBC across Ti/MLG/Ti (similar to 40 MW m(-2) K-1) is an order of magnitude lower compared to TBC at the Ti/SLG/Ti interface, whereas the TBC at Cu/MLG/Cu and Au/MLG/Au interfaces are similar to those of Cu/SLG/Cu and Au/SLG/Au, respectively. We find that this substantial decrease in TBC at the Ti/MLG/Ti interface is a result of phonon mismatch between the graphene layer bonded to Ti and the non-bonded graphene layers. The effect of number of graphene layers on TBC at Cu/MLG/Cu and Au/MLG/Au interfaces is relatively insignificant because of the weak interactions at these metal/graphene interfaces. It was observed that the moderate attenuation of Ti/C bonding strength can enhance the phonon coupling between the graphene layers bonded to Ti and non-bonded graphene layers, and can increase the TBC across Ti/MLG/Ti by similar to 100%. This impact of interfacial bonding strength on TBC at metal/MLG interfaces, predicted by AGF calculations, is further confirmed by non-equilibrium molecular dynamics simulations which show the transition of thermal transport mechanism from metal/graphene dominated resistance to graphene/graphene dominated resistance as the metal/graphene bonding strength increases in the metal/MLG/metal structure.
引用
收藏
页码:35852 / 35861
页数:10
相关论文
共 59 条
[1]   Atomic and electronic structure of simple metal/graphene and complex metal/graphene/metal interfaces [J].
Adamska, Lyudmyla ;
Lin, You ;
Ross, Andrew J. ;
Batzill, Matthias ;
Oleynik, Ivan I. .
PHYSICAL REVIEW B, 2012, 85 (19)
[2]   Graphene on Metallic Substrates: Suppression of the Kohn Anomalies in the Phonon Dispersion [J].
Allard, Adrien ;
Wirtz, Ludger .
NANO LETTERS, 2010, 10 (11) :4335-4340
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]   The electrochemistry of CVD graphene: progress and prospects [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (23) :8264-8281
[6]   Large effects of pressure induced inelastic channels on interface thermal conductance [J].
Chalopin, Yann ;
Mingo, Natalio ;
Diao, Jiankuai ;
Srivastava, Deepak ;
Volz, Sebastian .
APPLIED PHYSICS LETTERS, 2012, 101 (22)
[7]   Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites [J].
Chang, Shu-Wei ;
Nair, Arun K. ;
Buehler, Markus J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (24)
[8]   Substrate coupling suppresses size dependence of thermal conductivity in supported graphene [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANOSCALE, 2013, 5 (02) :532-536
[9]   Quantitative determination of scattering mechanism in large-area graphene on conventional and SAM-functionalized substrates at room temperature [J].
Chen, Kun ;
Wan, Xi ;
Liu, Danqing ;
Kang, Zhiwen ;
Xie, Weiguang ;
Chen, Jian ;
Miao, Qian ;
Xu, Jianbin .
NANOSCALE, 2013, 5 (13) :5784-5793
[10]   Phonon transmission and thermal conductance across graphene/Cu interface [J].
Chen, Liang ;
Huang, Zhen ;
Kumar, Satish .
APPLIED PHYSICS LETTERS, 2013, 103 (12)