The generalized Schrodinger-Langevin equation

被引:19
作者
Bargueno, Pedro [1 ]
Miret-Artes, Salvador [2 ]
机构
[1] Univ Los Andes, Dept Fis, Bogota, Distrito Capita, Colombia
[2] CSIC, Inst Fis Fundamental, E-28006 Madrid, Spain
关键词
Brownian particle; Multiplicative noise; Measurements; Bohmian mechanics; Generalized uncertainty principle; QUANTUM-THEORY; TRAJECTORIES; PARADOX; SYSTEMS; NOISE; MODEL; TIME;
D O I
10.1016/j.aop.2014.04.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, for a Brownian particle interacting with a heat bath, we derive a generalization of the so-called Schrodinger-Langevin or Kostin equation. This generalization is based on a nonlinear interaction model providing a state-dependent dissipation process exhibiting multiplicative noise. Two straightforward applications to the measurement process are then analyzed, continuous and weak measurements in terms of the quantum Bohmian trajectory formalism. Finally, it is also shown that the generalized uncertainty principle, which appears in some approaches to quantum gravity, can be expressed in terms of this generalized equation. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 31 条
[1]   HOW THE RESULT OF A MEASUREMENT OF A COMPONENT OF THE SPIN OF A SPIN-1/2 PARTICLE CAN TURN OUT TO BE 100 [J].
AHARONOV, Y ;
ALBERT, DZ ;
VAIDMAN, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (14) :1351-1354
[2]   QUANTUM DYNAMICS OF TUNNELING BETWEEN SUPERCONDUCTORS - MICROSCOPIC THEORY REDERIVED VIA AN OSCILLATOR MODEL [J].
AMBEGAOKAR, V ;
ECKERN, U .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 69 (2-3) :399-407
[3]   Generalized uncertainty principle and quantum gravitational friction [J].
Bargueno, Pedro .
PHYSICS LETTERS B, 2013, 727 (4-5) :496-499
[4]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[5]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[6]   INFLUENCE OF DISSIPATION ON QUANTUM TUNNELING IN MACROSCOPIC SYSTEMS [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICAL REVIEW LETTERS, 1981, 46 (04) :211-214
[7]  
Chin C.B., 1977, PHYS REV D, V16, P520
[8]   Dissipative geometric phase and decoherence in parity-violating chiral molecules [J].
Dorta-Urra, A. ;
Penate-Rodriguez, H. C. ;
Bargueno, P. ;
Rojas-Lorenzo, G. ;
Miret-Artes, S. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (17)
[9]   The Schrodinger equation with friction from the quantum trajectory perspective [J].
Garashchuk, Sophya ;
Dixit, Vaibhav ;
Gu, Bing ;
Mazzuca, James .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (05)
[10]  
HANGGI P, 1995, ADV CHEM PHYS, V89, P239