Energy scattering for nonlinear Klein-Gordon and Schrodinger equations in spatial dimensions 1 and 2

被引:130
作者
Nakanishi, K [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
D O I
10.1006/jfan.1999.3503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that when n = 1 and 2, the scattering operators are well-defined in the whole energy space for nonlinear Klein-Gordon and Schrodinger equations in R1 + n with nonlinearity \u\(p - 1) u, p > 1 + 4/n. Such results have been known only for (C) 1999 Academic Press.
引用
收藏
页码:201 / 225
页数:25
相关论文
共 17 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES
[2]   Scattering in the energy space and below for 3D NLS [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :267-297
[3]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[4]   ON SPACE-TIME MEANS AND EVERYWHERE DEFINED SCATTERING OPERATORS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1984, 186 (03) :383-391
[5]   ON SCATTERING AND EVERYWHERE DEFINED SCATTERING OPERATORS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
BRENNER, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (03) :310-344
[6]   RAPIDLY DECAYING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
CAZENAVE, T ;
WEISSLER, FB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :75-100
[7]  
GINIBRE J, 1985, ANN I H POINCARE-PHY, V43, P399
[8]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363
[9]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[10]  
HAYASHI N, 1987, LECT NOTES MATH, V1285, P162