Spectral stability of travelling wave solutions in a Keller-Segel model

被引:3
作者
Davis, P. N. [1 ]
van Heijster, P. [1 ]
Marangell, R. [2 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4000, Australia
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Keller-Segel model; Logarithmic chemosensitivity function; Point spectrum; Spectral stability; Travelling wave solutions; WELL-POSEDNESS;
D O I
10.1016/j.apnum.2018.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the point spectrum associated with travelling wave solutions in a Keller-Segel model for bacterial chemotaxis with small diffusivity of the chemoattractant, a logarithmic chemosensitivity function and a constant, sublinear or linear consumption rate. We show that, for constant or sublinear consumption, there is an eigenvalue at the origin of order two. This is associated with the translation invariance of the model and the existence of a continuous family of solutions with varying wave speed. These point spectrum results, in conjunction with previous results in the literature, imply that in these cases the travelling wave solutions are absolute unstable if the chemotactic coefficient is above a certain critical value, while they are transiently unstable otherwise. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 20 条
[1]   Absolute instabilities of travelling wave solutions in a Keller-Segel model [J].
Davis, P. N. ;
van Heijster, P. ;
Marangell, R. .
NONLINEARITY, 2017, 30 (11) :4029-4061
[2]  
Ebihara Y., 1992, Bull. Kyushu Inst. Tech. Math. Natur. Sci, V39, P29
[3]   Travelling waves in a model of species migration [J].
Feltham, DL ;
Chaplain, MAJ .
APPLIED MATHEMATICS LETTERS, 2000, 13 (07) :67-73
[4]   Numerical computation of an Evans function for travelling waves [J].
Harley, K. ;
van Heijster, P. ;
Marangell, R. ;
Pettet, G. J. ;
Wechselberger, M. .
MATHEMATICAL BIOSCIENCES, 2015, 266 :36-51
[5]  
Henry D., 1981, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[6]   Boundedness vs. blow-up in a chemotaxis system [J].
Horstmann, D ;
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :52-107
[7]  
Kang K, 2007, IMA J APPL MATH, V72, P140, DOI [10.1093/imamat/hxl028, 10.1093/imamat/hx1028]
[8]  
Kapitula T., 2013, APPL MATH SCI, DOI DOI 10.1007/978-1-4614-6995-7
[9]  
KELLER E F, 1975, Mathematical Biosciences, V27, P309, DOI 10.1016/0025-5564(75)90109-1
[10]   MODEL FOR CHEMOTAXIS [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1971, 30 (02) :225-&