Energy Performance Clustering and Data Visualization for Solar-Wind Hybrid Energy Systems

被引:1
|
作者
Ramirez-Murillo, Harrynson [1 ]
Salazar-Caceres, Fabian [1 ]
Camargo-Martinez, Martha P. [1 ]
Patino-Forero, Alvaro A. [2 ]
Mendez-Casallas, Francy J. [3 ]
机构
[1] Univ La Salle, Fac Ingn, Programa Ingn Elect, Grp Invest CALPOSALLE, Bogota, Colombia
[2] Univ La Salle, Fac Ingn, Programa Ingn Automatizac, Grp Invest AVARC, Bogota, Colombia
[3] Univ La Salle, Fac Ingn, Programa Ingn Ambiental & Sanit, Grp InvestProd Anim Sostenible, Bogota, Colombia
来源
APPLIED COMPUTER SCIENCES IN ENGINEERING, WEA 2022 | 2022年 / 1685卷
关键词
Clustering algorithm; Machine learning; Solar power generation; Wind power generation; Hybrid power systems;
D O I
10.1007/978-3-031-20611-5_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research article proposes a methodology based on data analytics, to compute well-known energy performance ratios like Capacity Factor (CF), Performance Yields (Yr) and Performance Ratio (PR) used for evaluating solar-wind hybrid energy systems. These terms are developed to study performance in renewable energy systems considering an estimation of energy resources. The methodology implemented is divided twofold, first, we deploy a recognized unsupervised machine learning technique as, k-means data clustering algorithm, considering the following feature space: time, solar radiation, wind speed, and temperature, which are renewable energy potentials available in the campus at Universidad de la Salle in Bogot ' a, Colombia, acquired by a local weather station which is considered as the case study. Second, according to this data-driven model, the performance factors are computed, yielding technological solutions and recommendations considering the data collected, analyzed, and visualized.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [1] Energy storage systems in solar-wind hybrid renewable systems
    Awasthi A.
    Karthikeyan V.
    Das V.
    Rajasekar S.
    Singh A.K.
    Awasthi, Abhishek (abhishekawasthi761993@gmail.com), 1600, Springer Verlag (00): : 189 - 222
  • [2] Rural electrification using hybrid solar-wind energy systems
    Satheesh, S. K.
    CURRENT SCIENCE, 2023, 125 (08): : 811 - 812
  • [3] Sustainable urban energy solutions: Forecasting energy production for hybrid solar-wind systems
    Javaid, Ali
    Sajid, Muhammad
    Uddin, Emad
    Waqas, Adeel
    Ayaz, Yasar
    ENERGY CONVERSION AND MANAGEMENT, 2024, 302
  • [4] A review on optimization techniques for sizing of solar-wind hybrid energy systems
    Singh, Shakti
    Singh, Mukesh
    Kaushik, S. C.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2016, 13 (15) : 1564 - 1578
  • [5] Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System
    Subrahmanyam, J. B. V.
    Alluvada, P.
    Bandana
    Bhanupriya, K.
    Shashidhar, C.
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2012, 2 (01) : 177 - 181
  • [6] Probabilistic performance assessment of autonomous solar-wind energy conversion systems
    Karaki, SH
    Chedid, RB
    Ramadan, R
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 1999, 14 (03) : 766 - 772
  • [7] Solar-wind hybrid renewable energy system: A review
    Khare, Vikas
    Nema, Savita
    Baredar, Prashant
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 58 : 23 - 33
  • [8] Solar-Wind Hybrid Energy System Using MPPT
    Vasant, Ligade Gitanjali
    Pawar, V. R.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2017, : 595 - 597
  • [9] Optimization and Reliability Evaluation of Hybrid Solar-Wind Energy Systems for Remote Areas
    Masih, Animesh
    Verma, H. K.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2020, 10 (04): : 1696 - 1707
  • [10] ENERGY ADDITION IN THE SOLAR-WIND
    LEER, E
    HOLZER, TE
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (NA9): : 4681 - 4688