Quantum control of the geometric phase in exact analytical solution using ultra-short strong pulses

被引:0
作者
Berrada, K. [1 ,2 ]
Eleuch, H. [3 ]
机构
[1] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Phys, Coll Sci, Riyadh 13318, Saudi Arabia
[2] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
[3] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
关键词
ultra-short strong pulses; geometric phase; phase jump; two-level systems; ADIABATIC PHASE; LASER;
D O I
10.1088/1054-660X/25/10/105201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the present paper, we study the geometric phase by considering a model that closely describes a realistic experimental scenario. We present an active way to control and quench the variation of the geometric phase using ultra-short strong pulses for a two-level quantum system with an exact analytical solution, i.e. beyond the rotating wave approximation. In particular, we study the variation of the geometric phase with a few cycles pulse and a smooth phase jump over a finite time intervals. The control of the variation rate of the geometric phase is obtained by acting on the shape of the phase transient and other parameters of the considered system. These features make two-level systems incorporated in ultra-short, of-resonant and gradually changing phase good candidates for implementation of schemes for the quantum computation and the coherent information processing.
引用
收藏
页数:7
相关论文
共 41 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   GEOMETRIC QUANTUM PHASE AND ANGLES [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW D, 1988, 38 (06) :1863-1870
[3]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[4]   SOME GEOMETRICAL CONSIDERATIONS OF BERRY PHASE [J].
ANANDAN, J ;
STODOLSKY, L .
PHYSICAL REVIEW D, 1987, 35 (08) :2597-2600
[5]   Consideration of geometric phase and population transfer without using rotating-wave approximation [J].
Berrada, K. ;
Eleuch, H. .
LASER PHYSICS, 2015, 25 (02)
[6]   Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics [J].
Berrada, K. .
ANNALS OF PHYSICS, 2014, 340 (01) :60-69
[7]   THE ADIABATIC PHASE AND PANCHARATNAM PHASE FOR POLARIZED-LIGHT [J].
BERRY, MV .
JOURNAL OF MODERN OPTICS, 1987, 34 (11) :1401-1407
[9]   Intense few-cycle laser fields: Frontiers of nonlinear optics [J].
Brabec, T ;
Krausz, F .
REVIEWS OF MODERN PHYSICS, 2000, 72 (02) :545-591
[10]   Ultrafast Gates for Single Atomic Qubits [J].
Campbell, W. C. ;
Mizrahi, J. ;
Quraishi, Q. ;
Senko, C. ;
Hayes, D. ;
Hucul, D. ;
Matsukevich, D. N. ;
Maunz, P. ;
Monroe, C. .
PHYSICAL REVIEW LETTERS, 2010, 105 (09)