MASS MINIMIZERS AND CONCENTRATION FOR NONLINEAR CHOQUARD EQUATIONS IN RN

被引:57
作者
Ye, Hongyu [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Peoples R China
关键词
Choquard equation; mass concentration; normalized solutions; Sharp existence; SCHRODINGER-EQUATIONS; INEQUALITIES; EXISTENCE; STATES;
D O I
10.12775/TMNA.2016.066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of minimizers to the following functional related to the nonlinear Choquard equation: E(u) = 1/2 integral(RN) |del u|(2) + 1/2 integral(RN) V(x)|u|(2) - 1/2p integral(RN) (I-alpha * |u|(p))|u|(p) on (S) over tilde (c) = {u is an element of H-1(R-N) | integral(RN) V(x)|u|(2) < +infinity, |u|(2) = c, c > 0} where N >= 1, alpha is an element of (0, N), (N + alpha)/N <= p < (N + alpha)/(N - 2)(+) and I-alpha: R-N -> R is the Riesz potential. We present sharp existence results for E(u) constrained on <(S)over tilde>(c) when V(x) equivalent to 0 for all (N + alpha)/N <= p < (N + alpha)/(N - 2)(+). For the mass critical case p = (N + alpha + 2)/N, we show wthat if 0 <= V is an element of L-loc(infinity)(R-N) and lim(|x|->+infinity) V(x) = +infinity, then mass minimizers exist only if 0 < c < c* = |Q|(2) and concentrate at the flattest minimum of V as c approaches c* from below, where Q is a groundstate solution of -Delta u + u = (I alpha * |mu|((N+alpha+2)/N))|u|((N+alpha+2)/N-2)u in R-N.
引用
收藏
页码:393 / 417
页数:25
相关论文
共 29 条
[1]  
[Anonymous], 2003, SOBOLEV SPACES
[2]   Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems [J].
Bellazzini, Jacopo ;
Frank, Rupert L. ;
Visciglia, Nicola .
MATHEMATISCHE ANNALEN, 2014, 360 (3-4) :653-673
[3]   DIVERGENT SOLUTIONS TO THE 5D HARTREE EQUATIONS [J].
Cao, Daomin ;
Guo, Qing .
COLLOQUIUM MATHEMATICUM, 2011, 125 (02) :255-287
[4]  
Choquard P, 2008, DIFFER INTEGRAL EQU, V21, P665
[5]   Semi-classical limit for Schrodinger equations with magnetic field and Hartree-type nonlinearities [J].
Cingolani, Silvia ;
Secchi, Simone ;
Squassina, Marco .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :973-1009
[6]   On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions [J].
Deng, Yinbin ;
Guo, Yujin ;
Lu, Lu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :99-118
[7]   SOLITON AND BLOW-UP SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-HARTREE EQUATION [J].
Genev, Hristo ;
Venkov, George .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (05) :903-923
[8]  
Guo Y.J., 2015, ANN I H POINCARE ANA
[9]  
Guo Y.J., ARXIV150201839V1
[10]   On the Mass Concentration for Bose-Einstein Condensates with Attractive Interactions [J].
Guo, Yujin ;
Seiringer, Robert .
LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (02) :141-156