Heat-Shock Response Transcriptional Program Enables High-Yield and High-Quality Recombinant Protein Production in Escherichia coli

被引:21
作者
Zhang, Xin [1 ,2 ]
Liu, Yu [1 ,2 ]
Genereux, Joseph C. [1 ,2 ]
Nolan, Chandler [1 ,2 ]
Singh, Meha [3 ]
Kelly, Jeffery W. [1 ,2 ,4 ]
机构
[1] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Physiol Chem, La Jolla, CA 92037 USA
[4] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
基金
美国国家卫生研究院;
关键词
STRESS-INDEPENDENT ACTIVATION; MOLECULAR CHAPERONES; IN-VIVO; COLI; PROTEOSTASIS; EXPRESSION; DEGRADATION; CELLS;
D O I
10.1021/cb5004477
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The biosynthesis of soluble, properly folded recombinant proteins in large quantities from Escherichia coli is desirable for academic research and industrial protein production. The basal E. coli protein homeostasis (proteostasis) network capacity is often insufficient to efficiently fold overexpressed proteins. Herein we demonstrate that a transcriptionally reprogrammed E. coli proteostasis network is generally superior for producing soluble, folded, and functional recombinant proteins. Reprogramming is accomplished by overexpressing a negative feedback deficient heat-shock response transcription factor before and during overexpression of the protein-of-interest. The advantage of transcriptional reprogramming versus simply overexpressing select proteostasis network components (e.g., chaperones and co-chaperones, which has been explored previously) is that a large number of proteostasis network components are upregulated at their evolved stoichiometry, thus maintaining the system capabilities of the proteostasis network that are currently incompletely understood. Transcriptional proteostasis network reprogramming mediated by stress-responsive signaling in the absence of stress should also be useful for protein production in other cells.
引用
收藏
页码:1945 / 1949
页数:5
相关论文
共 33 条
  • [1] Adapting proteostasis for disease intervention
    Balch, William E.
    Morimoto, Richard I.
    Dillin, Andrew
    Kelly, Jeffery W.
    [J]. SCIENCE, 2008, 319 (5865) : 916 - 919
  • [2] Recombinant protein folding and misfolding in Escherichia coli
    Baneyx, F
    Mujacic, M
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (11) : 1399 - 1408
  • [3] Baneyx Francois, 2003, Methods Mol Biol, V205, P171
  • [4] Exploration of Alternate Catalytic Mechanisms and Optimization Strategies for Retroaldolase Design
    Bjelic, Sinisa
    Kipnis, Yakov
    Wang, Ling
    Pianowski, Zbigniew
    Voroblev, Sergey
    Su, Min
    Seetharaman, Jayaraman
    Xiao, Rong
    Kornhaber, Gregory
    Hunt, John F.
    Tong, Liang
    Hilvert, Donald
    Baker, David
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2014, 426 (01) : 256 - 271
  • [5] Getting newly synthesized proteins into shape
    Bukau, B
    Deuerling, E
    Pfund, C
    Craig, EA
    [J]. CELL, 2000, 101 (02) : 119 - 122
  • [6] Molecular chaperones and protein quality control
    Bukau, Bernd
    Weissman, Jonathan
    Horwich, Arthur
    [J]. CELL, 2006, 125 (03) : 443 - 451
  • [7] Small-molecule proteostasis regulators for protein conformational diseases
    Calamini, Barbara
    Silva, Maria Catarina
    Madoux, Franck
    Hutt, Darren M.
    Khanna, Shilpi
    Chalfant, Monica A.
    Saldanha, S. Adrian
    Hodder, Peter
    Tait, Bradley D.
    Garza, Dan
    Balch, William E.
    Morimoto, Richard I.
    [J]. NATURE CHEMICAL BIOLOGY, 2012, 8 (02) : 185 - 196
  • [8] Bacteria co-transformed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning
    de Marco, A
    De Marco, V
    [J]. JOURNAL OF BIOTECHNOLOGY, 2004, 109 (1-2) : 45 - 52
  • [9] Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli
    de Marco, Ario
    [J]. NATURE PROTOCOLS, 2007, 2 (10) : 2632 - 2639
  • [10] de Marco A, 2011, METHODS MOL BIOL, V705, P31, DOI 10.1007/978-1-61737-967-3_3