The Kato-Ponce Inequality

被引:204
作者
Grafakos, Loukas [1 ]
Oh, Seungly [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
Fractional Leibniz rule; Kato-Ponce; Primary; 42B20; Secondary; 46E35; KORTEWEG-DEVRIES EQUATION; NAVIER-STOKES EQUATIONS; OPERATORS; EULER;
D O I
10.1080/03605302.2013.822885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we revisit the inequalities of Kato and Ponce concerning the L-r norm of the Bessel potential J(s)=(1-)(s/2) (or Riesz potential D-s=(- )(s/2)) of the product of two functions in terms of the product of the L-p norm of one function and the L-q norm of the Bessel potential J(s) (resp. Riesz potential D-s) of the other function. Here the indices p, q, and r are related as in Holder's inequality 1/p+1/q=1/r and they satisfy 1p, q and 1/2r < and <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="lpde_a_822885_o_ilm0001.gif"></inline-graphic> . Also the estimate is of weak-type when either p or q is equal to 1. In the case r<1 we indicate via an example that when <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="lpde_a_822885_o_ilm0002.gif"></inline-graphic> the inequality fails. Furthermore, we extend these results to the multi-parameter case.
引用
收藏
页码:1128 / 1157
页数:30
相关论文
共 22 条
[1]  
Bae H., GEVREY REGULARITY CL
[2]   Sobolev space estimates and symbolic calculus for bilinear pseudodifferential operators [J].
Benyi, Arpad ;
Nahmod, Andrea R. ;
Torres, Rodolfo H. .
JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (03) :431-453
[3]   Bilinear Sobolev-Poincare, Inequalities and Leibniz-Type Rules [J].
Bernicot, Frederic ;
Maldonado, Diego ;
Moen, Kabe ;
Naibo, Virginia .
JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) :1144-1180
[4]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[5]  
Coifman R., 1978, Ann. Inst. Fourier (Grenoble), V28, P177
[6]  
Coifman R.R., 1979, ASTERISQUE
[7]  
Coifman R.R., 1984, BEIJING LECT HARMONI
[8]   Strichartz estimates for the vibrating plate equation [J].
Cordero, Elena ;
Zucco, Davide .
JOURNAL OF EVOLUTION EQUATIONS, 2011, 11 (04) :827-845
[9]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[10]  
Grafakos L., 2008, Graduate Texts in Mathematics, Vsecond