Mitochondrial function and energy metabolism in neuronal HT22 cells resistant to oxidative stress

被引:44
作者
Pfeiffer, Annika [1 ,2 ]
Jaeckel, Martin [2 ,3 ]
Lewerenz, Jan [4 ]
Noack, Rebecca [1 ,2 ]
Pouya, Alireza [1 ,2 ]
Schacht, Teresa [1 ,2 ]
Hoffmann, Christina [1 ,2 ]
Winter, Jennifer [2 ,5 ]
Schweiger, Susann [2 ,5 ]
Schaefer, Michael K. E. [2 ,3 ]
Methner, Axel [1 ,2 ]
机构
[1] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Neurol, D-55122 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Focus Program Translat Neurosci FTN, D-55122 Mainz, Germany
[3] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Anesthesiol, D-55122 Mainz, Germany
[4] Univ Ulm, Dept Neurol, D-89069 Ulm, Germany
[5] Johannes Gutenberg Univ Mainz, Inst Human Genet, D-55122 Mainz, Germany
关键词
oxidative stress; glycolysis; cell death; mitochondria; fusion; fission; oxidative phosphorylation; GLUCOSE-METABOLISM; CONCISE GUIDE; GLUTATHIONE; PROTECTS; RESPIRATION; GLYCOLYSIS; ACTIVATION; APOPTOSIS; DEATH; NRF2;
D O I
10.1111/bph.12549
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background and PurposeThe hippocampal cell line HT22 is an excellent model for studying the consequences of endogenous oxidative stress. Extracellular glutamate depletes cellular glutathione by blocking the glutamate/cystine antiporter system xc-. Glutathione depletion induces a well-defined programme of cell death characterized by an increase in reactive oxygen species and mitochondrial dysfunction. Experimental ApproachWe compared the mitochondrial shape, the abundance of mitochondrial complexes and the mitochondrial respiration of HT22 cells, selected based on their resistance to glutamate, with those of the glutamate-sensitive parental cell line. Key ResultsGlutamate-resistant mitochondria were less fragmented and displayed seemingly contradictory features: mitochondrial calcium and superoxide were increased while high-resolution respirometry suggested a reduction in mitochondrial respiration. This was interpreted as a reverse activity of the ATP synthase under oxidative stress, leading to hydrolysis of ATP to maintain or even elevate the mitochondrial membrane potential, suggesting these cells endure ineffective energy metabolism to protect their membrane potential. Glutamate-resistant cells were also resistant to oligomycin, an inhibitor of the ATP synthase, but sensitive to deoxyglucose, an inhibitor of hexokinases. Exchanging glucose with galactose rendered resistant cells 1000-fold more sensitive to oligomycin. These results, together with a strong increase in cytosolic hexokinase 1 and 2, a reduced lactate production and an increased activity of glucose-6-phosphate dehydrogenase, suggest that glutamate-resistant HT22 cells shuttle most available glucose towards the hexose monophosphate shunt to increase glutathione recovery. Conclusions and ImplicationsThese results indicate that mitochondrial and metabolic adaptations play an important role in the resistance of cells to oxidative stress. Linked ArticlesThis article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit
引用
收藏
页码:2147 / 2158
页数:12
相关论文
共 37 条
[1]   Effects of dimethyl fumarate on neuroprotection and immunomodulation [J].
Albrecht, Philipp ;
Bouchachia, Imane ;
Goebels, Norbert ;
Henke, Nadine ;
Hofstetter, Harald H. ;
Issberner, Andrea ;
Kovacs, Zsuzsa ;
Lewerenz, Jan ;
Lisak, Dmitrij ;
Maher, Pamela ;
Mausberg, Anne-Kathrin ;
Quasthoff, Kim ;
Zimmermann, Corinna ;
Hartung, Hans-Peter ;
Methner, Axel .
JOURNAL OF NEUROINFLAMMATION, 2012, 9
[2]   Mechanisms of Oxidative Glutamate Toxicity: The Glutamate/Cystine Antiporter System xc- as a Neuroprotective Drug Target [J].
Albrecht, Philipp ;
Lewerenz, Jan ;
Dittmer, Sonja ;
Noack, Rebecca ;
Maher, Pamela ;
Methner, Axel .
CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS, 2010, 9 (03) :373-382
[3]   THE CONCISE GUIDE TO PHARMACOLOGY 2013/14: ENZYMES [J].
Alexander, Stephen P. H. ;
Benson, Helen E. ;
Faccenda, Elena ;
Pawson, Adam J. ;
Sharman, Joanna L. ;
Spedding, Michael ;
Peters, John A. ;
Harmar, Anthony J. .
BRITISH JOURNAL OF PHARMACOLOGY, 2013, 170 (08) :1797-1867
[4]   THE CONCISE GUIDE TO PHARMACOLOGY 2013/14: TRANSPORTERS [J].
Alexander, Stephen P. H. ;
Benson, Helen E. ;
Faccenda, Elena ;
Pawson, Adam J. ;
Sharman, Joanna L. ;
Spedding, Michael ;
Peters, John A. ;
Harmar, Anthony J. .
BRITISH JOURNAL OF PHARMACOLOGY, 2013, 170 (08) :1706-1796
[5]  
BenYoseph O, 1996, J NEUROCHEM, V66, P2329
[6]   Calcium, ATP, and ROS: a mitochondrial love-hate triangle [J].
Brookes, PS ;
Yoon, YS ;
Robotham, JL ;
Anders, MW ;
Sheu, SS .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2004, 287 (04) :C817-C833
[7]   The constitutively active orphan G-protein-coupled receptor GPR39 protects from cell death by increasing secretion of pigment epithelium-derived growth factor [J].
Dittmer, Sonja ;
Sahin, Mert ;
Pantlen, Anna ;
Saxena, Ambrish ;
Toutzaris, Diamandis ;
Pina, Ana-Luisa ;
Geerts, Andreas ;
Golz, Stefan ;
Methner, Axel .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (11) :7074-7081
[8]   Respiration-dependent H2O2 Removal in Brain Mitochondria via the Thioredoxin/Peroxiredoxin System [J].
Drechsel, Derek A. ;
Patel, Manisha .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (36) :27850-27858
[9]   Metabolism and functions of glutathione in brain [J].
Dringen, R .
PROGRESS IN NEUROBIOLOGY, 2000, 62 (06) :649-671
[10]   Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex 1 [J].
Duevel, Katrin ;
Yecies, Jessica L. ;
Menon, Suchithra ;
Raman, Pichai ;
Lipovsky, Alex I. ;
Souza, Amanda L. ;
Triantafellow, Ellen ;
Ma, Qicheng ;
Gorski, Regina ;
Cleaver, Stephen ;
Heiden, Matthew G. Vander ;
MacKeigan, Jeffrey P. ;
Finan, Peter M. ;
Clish, Clary B. ;
Murphy, Leon O. ;
Manning, Brendan D. .
MOLECULAR CELL, 2010, 39 (02) :171-183