Single-shot 3D wide-field fluorescence imaging with a Computational Miniature Mesoscope

被引:69
作者
Xue, Yujia [1 ]
Davison, Ian G. [2 ,3 ]
Boas, David A. [1 ,3 ,4 ]
Tian, Lei [1 ,3 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Dept Biol, Boston, MA 02215 USA
[3] Boston Univ, Neurophoton Ctr, Boston, MA 02215 USA
[4] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
关键词
HIGH-RESOLUTION; MICROSCOPY; LIGHT; ARRAYS; IMAGES;
D O I
10.1126/sciadv.abb7508
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fluorescence microscopes are indispensable to biology and neuroscience. The need for recording in freely behaving animals has further driven the development in miniaturized microscopes (miniscopes). However, conventional microscopes/miniscopes are inherently constrained by their limited space-bandwidth product, shallow depth of field (DOF), and inability to resolve three-dimensional (3D) distributed emitters. Here, we present a Computational Miniature Mesoscope (CM2) that overcomes these bottlenecks and enables single-shot 3D imaging across an 8 mm by 7 mm field of view and 2.5-mm DOF, achieving 7-mu m lateral resolution and better than 200-mu m axial resolution. The CM2 features a compact lightweight design that integrates a microlens array for imaging and a light-emitting diode array for excitation. Its expanded imaging capability is enabled by computational imaging that augments the optics by algorithms. We experimentally validate the mesoscopic imaging capability on 3D fluorescent samples. We further quantify the effects of scattering and background fluorescence on phantom experiments.
引用
收藏
页数:15
相关论文
共 46 条
[1]   Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope [J].
Adams, Jesse K. ;
Boominathan, Vivek ;
Avants, Benjamin W. ;
Vercosa, Daniel G. ;
Ye, Fan ;
Baraniuk, Richard G. ;
Robinson, Jacob T. ;
Veeraraghavan, Ashok .
SCIENCE ADVANCES, 2017, 3 (12)
[2]   All the light that we can see: a new era in miniaturized microscopy [J].
Aharoni, Daniel ;
Khakh, Baljit S. ;
Silva, Alcino J. ;
Golshani, Peyman .
NATURE METHODS, 2019, 16 (01) :11-13
[3]   Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers [J].
Almeida, Mariana S. C. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (08) :3074-3086
[4]   DiffuserCam: lensless single-exposure 3D imaging [J].
Antipa, Nick ;
Kuo, Grace ;
Heckel, Reinhard ;
Mildenhall, Ben ;
Bostan, Emrah ;
Ng, Ren ;
Waller, Laura .
OPTICA, 2018, 5 (01) :1-9
[5]   Multiscale lens design [J].
Brady, David J. ;
Hagen, Nathan .
OPTICS EXPRESS, 2009, 17 (13) :10659-10674
[6]   Design of a high-resolution light field miniscope for volumetric imaging in scattering tissue [J].
Chen, Yanqin ;
Xiong, Bo ;
Xue, Yujia ;
Jin, Xin ;
Greene, Joseph ;
Tian, Lei .
BIOMEDICAL OPTICS EXPRESS, 2020, 11 (03) :1662-1678
[7]   High-Speed Large-Field Multifocal Illumination Fluorescence Microscopy [J].
Chen, Zhenyue ;
Mc Larney, Benedict ;
Rebling, Johannes ;
Dean-Ben, Xose Luis ;
Zhou, Quanyu ;
Gottschalk, Sven ;
Razansky, Daniel .
LASER & PHOTONICS REVIEWS, 2020, 14 (02)
[8]   Development of a beam propagation method to simulate the point spread function degradation in scattering media [J].
Cheng, Xiaojun ;
Li, Yunzhe ;
Mertz, Jerome ;
Sakadzic, Sava ;
Devor, Anna ;
Boas, David A. ;
Tian, Lei .
OPTICS LETTERS, 2019, 44 (20) :4989-4992
[9]   Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio) [J].
Cong, Lin ;
Wang, Zeguan ;
Chai, Yuming ;
Hang, Wei ;
Shang, Chunfeng ;
Yang, Wenbin ;
Bai, Lu ;
Du, Jiulin ;
Wang, Kai ;
Wen, Quan .
ELIFE, 2017, 6
[10]   Genetic algorithm optimization for focusing through turbid media in noisy environments [J].
Conkey, Donald B. ;
Brown, Albert N. ;
Caravaca-Aguirre, Antonio M. ;
Piestun, Rafael .
OPTICS EXPRESS, 2012, 20 (05) :4840-4849