Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium

被引:176
作者
Bliokh, Konstantin Y. [1 ,2 ,3 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
[2] Technion Israel Inst Technol, Fac Mech Engn, Micro & Nanoopt Lab, IL-32000 Haifa, Israel
[3] Inst Radio Astron, UA-61002 Kharkov, Ukraine
来源
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS | 2009年 / 11卷 / 09期
关键词
geometrical optics; gradient-index media; Berry phase; spin-orbit interaction; spin Hall effect; ROTATIONAL FREQUENCY-SHIFT; TOTAL INTERNAL-REFLECTION; ORBITAL ANGULAR-MOMENTUM; INDEPENDENT TRANSVERSE SHIFT; IMBERT-FEDOROV SHIFTS; WAVE-PACKET DYNAMICS; TOPOLOGICAL PHASE; GEOMETRIC FORCES; OPTICAL-FIBERS; CIRCULAR-POLARIZATION;
D O I
10.1088/1464-4258/11/9/094009
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We review the geometrical-optics evolution of an electromagnetic wave propagating along a curved ray trajectory in a gradient-index dielectric medium. A Coriolis-type term appears in Maxwell equations under transition to the rotating coordinate system accompanying the ray. This term describes the spin-orbit coupling of light which consists of (i) the Berry phase responsible for trajectory-dependent polarization variations and (ii) the spin Hall effect representing polarization-dependent trajectory perturbations. These mutual phenomena are described within universal geometrical structures underlying the problem and are explained by the dynamics of the intrinsic angular momentum carried by the wave. Such close geometrodynamical interrelations illuminate a dual physical nature of the phenomena.
引用
收藏
页数:14
相关论文
共 163 条
[21]   Spin Hall effect and Berry phase of spinning particles [J].
Bérard, A ;
Mohrbach, H .
PHYSICS LETTERS A, 2006, 352 (03) :190-195
[22]   Paraxial beams of spinning light [J].
Berry, M .
INTERNATIONAL CONFERENCE ON SINGULAR OPTICS, 1998, 3487 :6-11
[23]  
Berry M. V., 1989, Advanced Series in Mathematical Physics, V5, P7, DOI DOI 10.1142/9789812798381_0001
[24]   CLASSICAL GEOMETRIC FORCES OF REACTION - AN EXACTLY SOLVABLE MODEL [J].
BERRY, MV ;
ROBBINS, JM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 442 (1916) :641-658
[25]   THE ADIABATIC PHASE AND PANCHARATNAM PHASE FOR POLARIZED-LIGHT [J].
BERRY, MV .
JOURNAL OF MODERN OPTICS, 1987, 34 (11) :1401-1407
[26]   INTERPRETING THE ANHOLONOMY OF COILED LIGHT [J].
BERRY, MV .
NATURE, 1987, 326 (6110) :277-278
[27]  
Bhandari R, 1997, PHYS REP, V281, P2
[28]   OBSERVATION OF TOPOLOGICAL PHASE BY USE OF A LASER INTERFEROMETER [J].
BHANDARI, R ;
SAMUEL, J .
PHYSICAL REVIEW LETTERS, 1988, 60 (13) :1211-1213
[29]   BERRY PHASE IN THE RELATIVISTIC THEORY OF SPINNING PARTICLES [J].
BIALYNICKIBIRULA, I ;
BIALYNICKABIRULA, Z .
PHYSICAL REVIEW D, 1987, 35 (08) :2383-2387
[30]   Rotational frequency shift [J].
BialynickiBirula, I ;
BialynickiBirula, Z .
PHYSICAL REVIEW LETTERS, 1997, 78 (13) :2539-2542