Intent Detection for Spoken Language Understanding Using a Deep Ensemble Model

被引:16
作者
Firdaus, Mauajama [1 ]
Bhatnagar, Shobhit [1 ]
Ekbal, Asif [1 ]
Bhattacharyya, Pushpak [1 ]
机构
[1] Indian Inst Technol Patna, Patna, Bihar, India
来源
PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I | 2018年 / 11012卷
关键词
Ensemble; Deep learning; Spoken language understanding;
D O I
10.1007/978-3-319-97304-3_48
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the significant task in spoken language understanding ( SLU) is intent detection. In this paper, we propose a deep learning based ensemble model for intent detection. The outputs of different deep learning architectures such as convolutional neural network ( CNN) and variants of recurrent neural networks ( RNN) like long short term memory ( LSTM) and gated recurrent units ( GRU) are combined together using a multi-layer perceptron ( MLP). The classifiers are trained using a combined word embedding representation obtained from both Word2Vec and Glove. Our experiments on the benchmark ATIS dataset show state-of-the-art performance for intent detection.
引用
收藏
页码:629 / 642
页数:14
相关论文
共 35 条
[21]  
Pennington J., 2014, 2014 C EMP METH NAT, P43
[22]  
Ravuri S, 2015, 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, P135
[23]  
Ravuri S, 2015, 2015 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING (ASRU), P368, DOI 10.1109/ASRU.2015.7404818
[24]  
Sang E.F., 2000, Proceedings of the Language Technology Joint Conference ANLPNAACL2000, P50
[25]  
Sarikaya R, 2011, INT CONF ACOUST SPEE, P5680
[26]   BoosTexter: A boosting-based system for text categorization [J].
Schapire, RE ;
Singer, Y .
MACHINE LEARNING, 2000, 39 (2-3) :135-168
[27]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
[28]   An Introduction to Conditional Random Fields [J].
Sutton, Charles ;
McCallum, Andrew .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (04) :267-373
[29]  
Tur G, 2005, INT CONF ACOUST SPEE, P41
[30]  
Tur G, 2011, INT CONF ACOUST SPEE, P5628