Intent Detection for Spoken Language Understanding Using a Deep Ensemble Model

被引:16
作者
Firdaus, Mauajama [1 ]
Bhatnagar, Shobhit [1 ]
Ekbal, Asif [1 ]
Bhattacharyya, Pushpak [1 ]
机构
[1] Indian Inst Technol Patna, Patna, Bihar, India
来源
PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I | 2018年 / 11012卷
关键词
Ensemble; Deep learning; Spoken language understanding;
D O I
10.1007/978-3-319-97304-3_48
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the significant task in spoken language understanding ( SLU) is intent detection. In this paper, we propose a deep learning based ensemble model for intent detection. The outputs of different deep learning architectures such as convolutional neural network ( CNN) and variants of recurrent neural networks ( RNN) like long short term memory ( LSTM) and gated recurrent units ( GRU) are combined together using a multi-layer perceptron ( MLP). The classifiers are trained using a combined word embedding representation obtained from both Word2Vec and Glove. Our experiments on the benchmark ATIS dataset show state-of-the-art performance for intent detection.
引用
收藏
页码:629 / 642
页数:14
相关论文
共 35 条
[1]  
[Anonymous], 2011, ACM T ASIAN LANG INF, DOI DOI 10.1145/1967293.1967296
[2]  
[Anonymous], 2016, ARXIV160901454
[3]  
[Anonymous], 2005, P ACL WORKSH FEAT EN
[4]   An active approach to spoken language processing [J].
AT and T Labs - Research ;
不详 ;
不详 ;
不详 .
ACM Trans. Speech Lang. Process., 2006, 3 (1-31) :1-31
[5]  
[Anonymous], 1990, SPEECH NATURAL LANGU
[6]  
Cho K., 2014, P 2014 C EMP METH NA, P1724
[7]  
Collobert R., 2008, P 25 INT C MACH LEAR, P160
[8]   How may I help you? [J].
Gorin, AL ;
Riccardi, G ;
Wright, JH .
SPEECH COMMUNICATION, 1997, 23 (1-2) :113-127
[9]  
Guo D, 2014, IEEE W SP LANG TECH, P554, DOI 10.1109/SLT.2014.7078634
[10]  
Haffner P, 2003, 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PROCEEDINGS, P632