Homotopy Type Theory in Lean

被引:12
作者
van Doorn, Floris [1 ]
von Raumer, Jakob [2 ]
Buchholtz, Ulrik [3 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Univ Nottingham, Nottingham, England
[3] Tech Univ Darmstadt, Darmstadt, Germany
来源
INTERACTIVE THEOREM PROVING (ITP 2017) | 2017年 / 10499卷
关键词
Homotopy type theory; Formalized mathematics; Lean; Proof assistants;
D O I
10.1007/978-3-319-66107-0_30
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We discuss the homotopy type theory library in the Lean proof assistant. The library is especially geared toward synthetic homotopy theory. Of particular interest is the use of just a few primitive notions of higher inductive types, namely quotients and truncations, and the use of cubical methods.
引用
收藏
页码:479 / 495
页数:17
相关论文
共 22 条
  • [1] Univalent categories and the Rezk completion
    Ahrens, Benedikt
    Kapulkin, Krzysztof
    Shulman, Michael
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2015, 25 (05) : 1010 - 1039
  • [2] Angiuli C., 2017, P 44 ANN ACM SIGPLAN
  • [3] Homotopy theoretic models of identity types
    Awodey, Steve
    Warren, Michael A.
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 : 45 - 55
  • [4] Bauer Andrej., 2016, The HoTT Library: A formalization of homotopy type theory in Coq
  • [5] Brunerie G., 2017, HOMOTOPY TYPE THEORY
  • [6] Buchholtz U., 2016, CAYLEY DICKSON CONST
  • [7] Cohen C., CUBICAL TYPE THEORY
  • [8] Cohen Cyril, 2016, 21 INT C TYP PROOFS
  • [9] de Moura L., 2017, SLIDES
  • [10] The Lean Theorem Prover (System Description)
    de Moura, Leonardo
    Kong, Soonho
    Avigad, Jeremy
    van Doorn, Floris
    von Raumer, Jakob
    [J]. AUTOMATED DEDUCTION - CADE-25, 2015, 9195 : 378 - 388