On topological entropy of commuting interval maps

被引:10
作者
Cánovas, JS
Linero, A
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Spain
[2] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
关键词
topological entropy; one-dimensional dynamics; commuting interval maps; periodic orbits;
D O I
10.1016/S0362-546X(01)00885-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discrete dynamical system generated by the composition of two maps was discussed. It was assumed the maps f and g commuted and f ο g = g ο f. The analysis showed that hA( f ο g ) ≠ hA(g ο f) for suitable maps f and g where hA(f) denotes the topological sequence entropy of f with respect to the increasing sequence of positive integers A.
引用
收藏
页码:1159 / 1165
页数:7
相关论文
共 15 条
[1]  
Alseda L., 1993, Combinatorial Dynamics and Entropy in Dimension One
[2]   Commutativity and non-commutativity of topological sequence entropy [J].
Balibrea, F ;
Peña, JSC ;
López, VJ .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (05) :1693-+
[3]  
BLOCK LS, 1992, LECT NOTES MATH, V1513
[5]   DYNAMIC COMPLEXITY IN DUOPOLY GAMES [J].
DANA, RA ;
MONTRUCCHIO, L .
JOURNAL OF ECONOMIC THEORY, 1986, 40 (01) :40-56
[6]  
GOODMAN TNT, 1974, P LOND MATH SOC, V29, P331
[7]  
Goodwyn LW, 1972, TOPOLOGY, V11, P377, DOI 10.1016/0040-9383(72)90033- X
[8]   PIECEWISE INVERTIBLE DYNAMIC-SYSTEMS [J].
HOFBAUER, F .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 72 (03) :359-386
[9]   SOME ERGODIC PROPERTIES OF COMMUTING DIFFEOMORPHISMS [J].
HU, HY .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 :73-100