Hausdorff dimension and uniform exponents in dimension two

被引:7
作者
Bugeaud, Yann [1 ,2 ]
Cheung, Yitwah [3 ]
Chevallier, Nicolas [4 ]
机构
[1] Univ Strasbourg, IRMA, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] San Francisco State Univ, 1600 Holloway Ave, San Francisco, CA 94132 USA
[4] Haute Alsace Univ, 4 Rue Freres Lumiere, F-68093 Mulhouse, France
关键词
DIOPHANTINE APPROXIMATION; DIRICHLETS THEOREM; CURVES; SETS;
D O I
10.1017/S0305004118000312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponent mu in (1/2, 1) is equal to 2(1 - mu) for mu >= v 2/2, whereas for mu < v 2/2 it is greater than 2(1 - mu) and at most equal to (3 - 2 mu)(1 - mu)/(1 -mu + mu(2)). We also establish that this dimension tends to 4/3 (which is the dimension of the set of singular two-dimensional vectors) when mu tends to 1/2. These results improve upon previous estimates of R. Baker, joint work of the first author with M. Laurent, and unpublished work of M. Laurent. Moreover, we prove a lower bound for the packing dimension, which appears to be strictly greater than the Hausdorff dimension for mu >= 0.565....
引用
收藏
页码:249 / 284
页数:36
相关论文
共 34 条
[1]  
[Anonymous], 1980, QUEENS PAPERS PURE A
[2]   SINGULAR NORMAL-TUPLES AND HAUSDORFF DIMENSION [J].
BAKER, RC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 81 (MAY) :377-385
[3]  
BAKER RC, 1992, P CAMBRIDGE PHILOS S, V111, P577
[4]  
Bernik V. I., 1999, Cambridge Tracts in Mathematics, V137
[5]   Exponents of diophantine approximation and Sturmian continued fractions [J].
Bugeaud, Y ;
Laurent, M .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (03) :773-+
[6]  
Bugeaud Y., 2004, Cambridge Tracts in Mathematics
[7]  
BUGEAUD Y., 2014, DYNAMICS ANAL NUMBER
[8]   ON EXPONENTS OF HOMOGENEOUS AND INHOMOGENEOUS DIOPHANTINE APPROXIMATION [J].
Bugeaud, Yann ;
Laurent, Michel .
MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (04) :747-766
[9]  
Cassels J.W.S., 1957, CAMBRIDGE TRACTS MAT, V99
[10]   Hausdorff dimension of the set of points on divergent trajectories of a homogeneous flow on a product space [J].
Cheung, Yitwah .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :65-85