Asymptotic behavior of multiple solutions for quasilinear Schrodinger equations

被引:1
作者
Zhang, Xian [1 ]
Huang, Chen [2 ]
机构
[1] Univ Shanghai Sci & Technol, Business Sch, Shanghai 200433, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200433, Peoples R China
关键词
quasilinear Schr?dinger equations; variational methods; L??-estimate; asymptotic behavior; CONCENTRATION-COMPACTNESS PRINCIPLE; SIGN-CHANGING SOLUTIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; NODAL SOLUTIONS; GROUND-STATES; EXISTENCE; CALCULUS;
D O I
10.14232/ejqtde.2022.1.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes the multiplicity of solutions for a class of quasilinear Schrodinger elliptic equations: - increment u + V(x)u - 72 increment (u2)u = f(x, u), x E R3, where V(x) : R3 R is a given potential and 7 > 0. Furthermore, by the variational argument and L degrees degrees-estimates, we are able to obtain the precise asymptotic behavior of these solutions as 7 0+.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 35 条
[1]   Uniqueness of asymptotic limit of ground states for a class of quasilinear Schrodinger equation with H1-critical growth in Double-struck capital R3 [J].
Adachi, Shinji ;
Shibata, Masataka ;
Watanabe, Tatsuya .
APPLICABLE ANALYSIS, 2022, 101 (02) :671-691
[2]  
Adachi S, 2019, CALC VAR PARTIAL DIF, V58, DOI 10.1007/s00526-019-1527-y
[3]   Blow-up phenomena and asymptotic profiles of ground states of quasilinear elliptic equations with H1-supercritical nonlinearities [J].
Adachi, Shinji ;
Shibata, Masataka ;
Watanabe, Tatsuya .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) :1492-1514
[4]  
Adachi S, 2012, ADV NONLINEAR STUD, V12, P255
[5]   Soliton solutions for a class of quasilinear Schrodinger equations with a parameter [J].
Alves, Claudianor O. ;
Wang, Youjun ;
Shen, Yaotian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) :318-343
[6]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152
[7]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[8]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[9]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[10]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313